Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FHL2 interacts with EGFR to promote glioblastoma growth

Abstract

Four-and-a-half LIM protein2 (FHL2) is a member of the LIM-only protein family, which plays a critical role in tumorigenesis. We previously reported that FHL2 is upregulated and plays an oncogenic role in glioblastoma (GBM), the most common and aggressive brain tumor. GBM is also marked by amplification of the epidermal growth factor receptor (EGFR) gene and its mutations, of which EGFRvIII is the most common and functionally significant. Here we report that FHL2 physically interacts with the wild-type EGFR and its mutated EGFRvIII form in GBM cells. Expression of FHL2 caused increased EGFR and EGFRvIII protein levels and this was due to an increase in protein stability rather than an increase in EGFR mRNA expression. In contrast, FHL2 knockdown using RNA interference reduced EGFR and EGFRvIII protein expression and the phosphorylation levels of EGFR and AKT. Consistent with these features, EGFR expression was significantly lower in mouse FHL2-null astrocytes, where reintroduction of FHL2 was able to restore EGFR levels. Using established GBM cell lines and patient-derived neurosphere lines, FHL2 silencing markedly induced cell apoptosis in EGFRvIII-positive cells. Targeting FHL2 significantly prevented EGFRvIII-positive GBM tumor growth in vivo. FHL2 expression also positively correlated with EGFR expression in GBM samples from patients. Taken together, our results demonstrate that FHL2 interacts with EGFR and EGFRvIII to increase their levels and this promotes glioma growth, representing a novel mechanism that may be therapeutically targetable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  Google Scholar 

  2. Genini M, Schwalbe P, Scholl FA, Remppis A, Mattei MG, Schafer BW. Subtractive cloning and characterization of DRAL, a novel LIM-domain protein down-regulated in rhabdomyosarcoma. DNA Cell Biol. 1997;16:433–42.

    Article  CAS  Google Scholar 

  3. Gabriel B, Fischer DC, Orlowska-Volk M, zurHausen A, Schüle R, Müller JM, et al. Expression of the transcriptional coregulator FHL2 in human breast cancer: a clinic pathologic study. J Soc Gynecol Investig. 2006;13:69–75.

    Article  CAS  Google Scholar 

  4. Wang J, Yang Y, Xia HH, Gu Q, Lin MC, Jiang B, et al. Suppression of FHL2 expression induces cell differentiation and inhibits gastric and colon carcinogenesis. Gastroenterology. 2007;132:1066–76.

    Article  CAS  Google Scholar 

  5. Hua G, He C, Lv X, Fan L, Wang C, Remmenga SW, et al. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription. Cell Death Dis. 2016;7:e2297.

    Article  CAS  Google Scholar 

  6. Jin H, Lee K, Kim YH, Oh HK, Maeng YI, Kim TH, et al. Scaffold protein FHL2 facilitates MDM2-mediated degradation of IER3 to regulate proliferation of cervical cancer cells. Oncogene. 2016;35:5106–18.

    Article  CAS  Google Scholar 

  7. Nouët Y, Dahan J, Labalette C, Levillayer F, Julien B, Jouvion G, et al. The four and a half LIM-only protein 2 regulates liver homeostasis and contributes to carcinogenesis. J Hepatol. 2012;57:1029–36.

    Article  Google Scholar 

  8. Dahan J, Nouët Y, Jouvion G, Levillayer F, Adib-Conquy M, Cassard-Doulcier AM, et al. LIM-only protein FHL2 activates NF-κB signaling in the control of liver regeneration and hepatocarcinogenesis. Mol Cell Biol. 2013;33:3299–308.

    Article  CAS  Google Scholar 

  9. Genini M, Schwalbe P, Scholl FA, Remppis A, Mattei MG, Schäfer BW. Subtractive cloning and characterization of DRAL, a novel LIM-domain protein down-regulated in rhabdomyosarcoma. DNA Cell Biol. 1997;16:433–42.

    Article  CAS  Google Scholar 

  10. Verset L, Feys L, Trépant AL, De Wever O, Demetter P. FHL2: a scaffold protein of carcinogenesis, tumour-stroma interactions and treatment response. Histol Histopathol. 2016;31:469–78.

    CAS  PubMed  Google Scholar 

  11. Li M, Wang J, Ng SS, Chan CY, Chen AC, Xia HP, et al. The four-and-a-half-LIM protein 2 (FHL2) is overexpressed in gliomas and associated with oncogenic activities. Glia. 2008;56:1328–38.

    Article  Google Scholar 

  12. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Cancer Genome Atlas Research Network Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  Google Scholar 

  13. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocyticglioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.

    Article  CAS  Google Scholar 

  14. Del Vecchio CA, Li G, Wong AJ. Targeting EGF receptor variant III: tumor-specific peptide vaccination for malignant gliomas. Expert Rev Vaccin. 2012;11:133–44.

    Article  Google Scholar 

  15. Thorne AH, Zanca C, Furnari F. Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro Oncol. 2016;18:914–8.

    Article  CAS  Google Scholar 

  16. Thelemann A, Petti F, Griffin G, Iwata K, Hunt T, Settinari T, et al. Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol Cell Proteom. 2005;4:356–76.

    Article  CAS  Google Scholar 

  17. Labalette C, Nouët Y, Levillayer F, Armengol C, Renard CA, Soubigou G, et al. LIM-only protein FHL2 mediates ras-induced transformation through cyclin D1 and p53 pathways. PLoS One. 2008;3:e3761.

    Article  Google Scholar 

  18. Purow BW, Sundaresan TK, Burdick MJ, Kefas BA, Comeau LD, Hawkinson MP, et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis. 2008;29:918–25.

    Article  CAS  Google Scholar 

  19. Fielitz J, van Rooij E, Spencer JA, Shelton JM, Latif S, van der Nagel R, et al. Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proc Natl Acad Sci USA. 2007;104:4377–82.

    Article  CAS  Google Scholar 

  20. Padfield E, Ellis HP, Kurian KM. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front Oncol. 2015;5:5.

    Article  Google Scholar 

  21. Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 2001;3:802–8.

    Article  CAS  Google Scholar 

  22. Latha K, Li M, Chumbalkar V, Gururaj A, Hwang Y, Dakeng S, et al. Nuclear EGFRvIII-STAT5b complex contributes to glioblastoma cell survival by direct activation of the Bcl-XL promoter. Int J Cancer. 2013;132:509–20.

    Article  CAS  Google Scholar 

  23. Hsu SC, Miller SA, Wang Y, Hung MC. Nuclear EGFR is required for cisplatin resistance and DNA repair. Am J Transl Res. 2009;1:249–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Z, Han L, Dong Y, Tan Y, Li Y, Zhao M, Xie H, Ju H, Wang H, Zhao Y, Zheng Q, Wang Q, Su J, Fang C, Fu S, Jiang T, Liu J, Li X, Kang C, Ren H. EGFRvIII/integrin β3 interaction in hypoxic and vitronectinenriching microenvironment promote GBM progression and metastasis. Oncotarget. 2016;7:4680–94.

    PubMed  Google Scholar 

  25. Vouri M, Croucher DR, Kennedy SP, An Q, Pilkington GJ, Hafizi S. Axl-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells. Oncogenesis. 2016;5:e266.

    Article  CAS  Google Scholar 

  26. Li L, Puliyappadamba VT, Chakraborty S, Rehman A, Vemireddy V, Saha D, et al. EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma. Oncogene. 2015;34:129–34.

    Article  Google Scholar 

  27. Jahani-Asl A, Yin H, Soleimani VD, Haque T, Luchman HA, Chang NC, et al. Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. Nat Neurosci. 2016;19:798–806.

    Article  CAS  Google Scholar 

  28. Cvrljevic AN, Akhavan D, Wu M, Martinello P, Furnari FB, Johnston AJ, et al. Activation of Src induces mitochondrial localisation of de2-7EGFR (EGFRvIII) in glioma cells: implications for glucose metabolism. J Cell Sci. 2011;124:2938–50.

    Article  CAS  Google Scholar 

  29. Zhu H, Cao XY, Ali-Osman F, Keir S. Lo HWEGFR and EGFRvIII interact with PUMA to inhibit mitochondrial translocalization of PUMA and PUMA-mediated apoptosis independent of EGFR kinase activity. Cancer Lett. 2010;294:101–10.

    Article  CAS  Google Scholar 

  30. Stutz MA, Shattuck DL, Laederich MB, Carraway KL 3rd, Sweeney C. LRIG1 negatively regulates the oncogenic EGF receptor mutant EGFRvIII. Oncogene. 2008;27:5741–52.

    Article  CAS  Google Scholar 

  31. Davies GC, Ryan PE, Rahman L, Zajac-Kaye M, Lipkowitz S. EGFRvIII undergoes activation-dependent downregulation mediated by the Cbl proteins. Oncogene. 2006;25:6497–509.

    Article  CAS  Google Scholar 

  32. Hiratani I, Yamamoto N, Mochizuki T, Ohmori SY, Taira M. Selective degradation of excess Ldb1 by Rnf12/RLIM confers proper Ldb1 expression levels and Xlim-1/Ldb1 stoichiometry in Xenopus organizer functions. Development. 2003;130:4161–75.

    Article  CAS  Google Scholar 

  33. Sangadala S, Boden SD, Viggeswarapu M, Liu Y, Titus L. LIM mineralization protein-1 potentiates bone morphogenetic protein responsiveness via a novel interaction with Smurf1 resulting in decreased ubiquitination of Smads. J Biol Chem. 2006;281:17212–9.

    Article  CAS  Google Scholar 

  34. Fomchenko EI, Holland EC. Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res. 2006;12:5288–97.

    Article  CAS  Google Scholar 

  35. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55–7.

    Article  CAS  Google Scholar 

  36. Read RD, Cavenee WK, Furnari FB, Thomas JB. A drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet. 2009 Feb;5:e1000374.

    Article  Google Scholar 

  37. Labalette C, Nouët Y, Levillayer F, Armengol C, Renard CA, Soubigou G, et al. The LIM-only protein FHL2 mediates ras-induced transformation through cyclin D1 and p53 pathways. PLoS ONE. 2008;3:e3761.

    Article  Google Scholar 

  38. Lan Q, Wang A, Cheng Y, Mukasa A, Ma J, Hong L, et al. Guanylate binding protein-1 mediates EGFRvIII and promotes glioblastoma growth in vivo but not in vitro. Oncotarget. 2016;7:9680–91.

    PubMed  PubMed Central  Google Scholar 

  39. Chu PH, Bardwell WM, Gu Y, Ross J Jr, Chen J. FHL2 (SLIM3) is not essential for cardiac development and function. Mol Cell Biol. 2000;20:7460–2.

    Article  CAS  Google Scholar 

  40. Schildge S., Bohrer C., Beck K., Schachtrup C., Isolation and culture of mouse cortical astrocytes. J Vis Exp. 2013;71:pii: 50079

    Google Scholar 

  41. Paul C, Lacroix M, Iankova I, Julien E, Schäfer BW, Labalette C, et al. The LIM-only protein FHL2 is a negative regulator of E4F1. Oncogene. 2006;25:5475–84.

    Article  CAS  Google Scholar 

  42. Nishi H, Nishi KH, Johnson AC. Early Growth Response-1 gene mediates up-regulation of epidermal growth factor receptor expression during hypoxia. Cancer Res. 2002;62:827–34.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81572480 and 81172401, to M.L.) and the Second Affiliated Hospital of Soochow University Youth pre-Research Fund (SDFEYQN1607, to L.S.). We thank Drs. Yu Wei and Ju Chen for the generous gifts of FHL2 null MEF cells and FHL2 knockout newborn mice. M.L. was also partially supported by Jiangsu distinguished Medical Professorship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Yu, S., Xu, H. et al. FHL2 interacts with EGFR to promote glioblastoma growth. Oncogene 37, 1386–1398 (2018). https://doi.org/10.1038/s41388-017-0068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0068-0

This article is cited by

Search

Quick links