Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Beyond traditional pharmacology: evaluating phosphodiesterase inhibitors in autism spectrum disorder

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lord C, Charman T, Havdahl A, Carbone P, Anagnostou E, Boyd B, et al. The Lancet Commission on the future of care and clinical research in autism. Lancet. 2022;399:271–334.

    Article  PubMed  Google Scholar 

  2. Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Liu W, et al. Recent developments of phosphodiesterase inhibitors: Clinical trials, emerging indications and novel molecules. Front Pharm. 2022;13:1057083.

    Article  CAS  Google Scholar 

  3. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharm Rev. 2006;58:488–520.

    Article  CAS  PubMed  Google Scholar 

  4. Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry. 2021;26:4570–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hendouei F, Sanjari Moghaddam H, Mohammadi MR, Taslimi N, Rezaei F, Akhondzadeh S. Resveratrol as adjunctive therapy in treatment of irritability in children with autism: A double-blind and placebo-controlled randomized trial. J Clin Pharm Ther. 2020;45:324–34.

    Article  CAS  PubMed  Google Scholar 

  6. Ebrahimi P, Seyedmirzaei H, Moradi K, Bagheri S, Moeini M, Mohammadi MR, et al. Cilostazol as adjunctive therapy in treatment of children with autism spectrum disorders: a double-blind and placebo-controlled randomized trial. Int Clin Psychopharmacol. 2023;38:89–95.

    Article  PubMed  Google Scholar 

  7. Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Ethridge LE, Outterson AH, et al. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial. Nat Med. 2021;27:862–70.

    Article  CAS  PubMed  Google Scholar 

  8. Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59:367–74.

    Article  CAS  PubMed  Google Scholar 

  9. Chmielewski WX, Beste C. Action control processes in autism spectrum disorder – Insights from a neurobiological and neuroanatomical perspective. Prog Neurobiol. 2015;124:49–83.

    Article  PubMed  Google Scholar 

  10. Chang J, Gilman SR, Chiang AH, Sanders SJ, Vitkup D. Genotype to phenotype relationships in autism spectrum disorders. Nat Neurosci. 2014;18:191–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nickl-Jockschat T, Habel U, Maria Michel T, Manning J, Laird AR, Fox PT, et al. Brain structure anomalies in autism spectrum disorder-a meta-analysis of VBM studies using anatomic likelihood estimation. Hum Brain Mapp. 2012;33:1470–89.

    Article  PubMed  Google Scholar 

  12. Fuccillo MV. Striatal circuits as a common node for autism pathophysiology. Front Neurosci. 2016;10:159489.

    Article  Google Scholar 

  13. Cheng Y, Wang ZM, Tan W, Wang X, Li Y, Bai B, et al. Partial loss of psychiatric risk gene Mir137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a. Nat Neurosci. 2018;21:1689–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luhach K, Kulkarni GT, Singh VP, Sharma B. Vinpocetine amended prenatal valproic acid induced features of ASD possibly by altering markers of neuronal function, inflammation, and oxidative stress. Autism Res. 2021;14:2270–86.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors were funded by the grants #2019/04188-0 (DLR), and #2017/00003-0 (FEP-N) from the São Paulo Research Foundation (FAPESP) and grant # 312009/2022-4 (FEP-N) from the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

FEP-N: Conceptualization, literature review, writing- original draft preparation, writing- reviewing and editing. AJOC, AS, and DLR: Literature review, writing- original draft preparation.

Corresponding author

Correspondence to Fernando E. Padovan-Neto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padovan-Neto, F.E., Cerveira, A.J.d.O., da Silva, A. et al. Beyond traditional pharmacology: evaluating phosphodiesterase inhibitors in autism spectrum disorder. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01860-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01860-z

Search

Quick links