Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mediodorsal thalamus projection to medial prefrontal cortical mediates social defeat stress-induced depression-like behaviors

Abstract

Clinical studies have shown that the mediodorsal thalamus (MD) may play an important role in the development of depression. However, the molecular and circuit mechanisms by which the mediodorsal thalamus (MD) participates in the pathological processes of depression remain unclear. Here, we show that in male chronic social defeat stress (CSDS) mice, the calcium signaling activity of glutamatergic neurons in MD is reduced. By combining conventional neurotracer and transneuronal virus tracing techniques, we identify a synaptic circuit connecting MD and medial prefrontal cortex (mPFC) in the mouse. Brain slice electrophysiology and fiber optic recordings reveal that the reduced activity of MD glutamatergic neurons leads to an excitatory-inhibitory imbalance of pyramidal neurons in mPFC. Furthermore, activation of MD glutamatergic neurons restores the electrophysiological properties abnormal in mPFC. Optogenetic activation of the MD-mPFC circuit ameliorates anxiety and depression-like behaviors in CSDS mice. Taken together, these data support the critical role of MD-mPFC circuit on CSDS-induced depression-like behavior and provide a potential mechanistic explanation for depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The activity of MD glutamatergic neurons is reduced by CSDS.
Fig. 2: Chemogenetic manipulated of glutamatergic neurons in MD modulated anxiety and depression-like behavior.
Fig. 3: mPFC pyramidal neurons are activated by CSDS.
Fig. 4: CSDS impairs synaptic transmission from MD to mPFC.
Fig. 5: Active MD-mPFC circuit alleviated depression-like behaviors induced by CSDS.

Similar content being viewed by others

References

  1. Belda X, Fuentes S, Daviu N, Nadal R, Armario A. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress. 2015;18:269–79.

    Article  CAS  PubMed  Google Scholar 

  2. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ding Y, Dai J. Advance in stress for depressive disorder. Adv Exp Med Biol. 2019;1180:147–78.

    Article  CAS  PubMed  Google Scholar 

  4. Richter-Levin G, Xu L. How could stress lead to major depressive disorder? Ibro Rep. 2018;4:38–43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Klengel T, Binder EB. Gene-environment interactions in major depressive disorder. Can J Psychiatry. 2013;58:76–83.

    Article  PubMed  Google Scholar 

  6. Brown EC, Clark DL, Hassel S, Macqueen G, Ramasubbu R. Intrinsic thalamocortical connectivity varies in the age of onset subtypes in major depressive disorder. Neuropsychiatr Dis Treat. 2019;15:75–82.

    Article  CAS  PubMed  Google Scholar 

  7. Sherman SM, Guillery RW. Functional organization of thalamocortical relays. J Neurophysiol. 1996;76:1367–95.

    Article  CAS  PubMed  Google Scholar 

  8. Guillery RW. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J Anat. 1995;187:583–92.

    PubMed  PubMed Central  Google Scholar 

  9. Mitchell AS. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev. 2015;54:76–88.

    Article  PubMed  Google Scholar 

  10. De Witte L, Brouns R, Kavadias D, Engelborghs S, De Deyn PP, Marien P. Cognitive, affective and behavioural disturbances following vascular thalamic lesions: a review. Cortex. 2011;47:273–319.

    Article  PubMed  Google Scholar 

  11. Van der Werf YD, Scheltens P, Lindeboom J, Witter MP, Uylings HB, Jolles J. Deficits of memory, executive functioning and attention following infarction in the thalamus; A study of 22 cases with localised lesions. Neuropsychologia. 2003;41:1330–44.

    Article  PubMed  Google Scholar 

  12. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.

    Article  PubMed  Google Scholar 

  13. Li W, Liu J, Skidmore F, Liu Y, Tian J, Li K. White matter microstructure changes in the thalamus in Parkinson disease with depression: a diffusion tensor mr imaging study. Ajnr Am J Neuroradiol. 2010;31:1861–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cardoso EF, Maia FM, Fregni F, Myczkowski ML, Melo LM, Sato JR, et al. Depression in Parkinson’s disease: convergence from voxel-based morphometry and functional magnetic resonance imaging in the limbic thalamus. Neuroimage. 2009;47:467–72.

    Article  PubMed  Google Scholar 

  15. Golden SA, Covington HR, Berton O, Russo SJ. Corrigendum: a standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2015;10:643.

    Article  PubMed  Google Scholar 

  16. Morel C, Montgomery SE, Li L, Durand-De CR, Teichman EM, Juarez B, et al. Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors. Nat Commun. 2022;13:1532.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shepard R, Page CE, Coutellier L. Sensitivity of the prefrontal gabaergic system to chronic stress in male and female mice: relevance for sex differences in stress-related disorders. Neuroscience. 2016;332:1–12.

    Article  CAS  PubMed  Google Scholar 

  18. Mclaughlin RJ, Hill MN, Dang SS, Wainwright SR, Galea LA, Hillard CJ, et al. Gorzalka BB. Upregulation of cb(1) receptor binding in the ventromedial prefrontal cortex promotes proactive stress-coping strategies following chronic stress exposure. Behav Brain Res. 2013;237:333–7.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ. The organization of two new cortical interneuronal circuits. Nat Neurosci. 2013;16:210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kobayashi M, Hayashi Y, Fujimoto Y, Matsuoka I. Decreased parvalbumin and somatostatin neurons in medial prefrontal cortex in brinp1-ko mice. Neurosci Lett. 2018;683:82–8.

    Article  CAS  PubMed  Google Scholar 

  21. Miller OH, Bruns A, Ben Ammar I, Mueggler T, Hall BJ. Synaptic regulation of a thalamocortical circuit controls depression-related behavior. Cell Rep. 2017;20:1867–80.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu X, Tang HD, Dong WY, Kang F, Liu A, Mao Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states. Nat Neurosci. 2021;24:542–53.

    Article  CAS  PubMed  Google Scholar 

  23. Huang L, Xi Y, Peng Y, Yang Y, Huang X, Fu Y, et al. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron. 2019;102:128–42.

    Article  CAS  PubMed  Google Scholar 

  24. Dwyer JM, Maldonado-Aviles JG, Lepack AE, Dileone RJ, Duman RS. Ribosomal protein s6 kinase 1 signaling in prefrontal cortex controls depressive behavior. Proc Natl Acad Sci USA. 2015;112:6188–93.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang B, Wang W, Wang F, Hu ZL, Xiao JL, Yang S, et al. The stability of nr2b in the nucleus accumbens controls behavioral and synaptic adaptations to chronic stress. Biol Psychiatry. 2013;74:145–55.

    Article  CAS  PubMed  Google Scholar 

  26. Krishnan V, Nestler EJ. Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry. 2010;167:1305–20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee AT, Cunniff MM, See JZ, Wilke SA, Luongo FJ, Ellwood IT, et al. Vip interneurons contribute to avoidance behavior by regulating information flow across hippocampal-prefrontal networks. Neuron. 2019;102:1223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arnsten AF. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci. 2015;18:1376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cho JH, Deisseroth K, Bolshakov VY. Synaptic encoding of fear extinction in mpfc-amygdala circuits. Neuron. 2013;80:1491–507.

    Article  CAS  PubMed  Google Scholar 

  30. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10:410–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delevich K, Tucciarone J, Huang ZJ, Li B. The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J Neurosci. 2015;35:5743–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong Z, Chen W, Chen C, Wang H, Cui W, Tan Z, et al. Cul3 deficiency causes social deficits and anxiety-like behaviors by impairing excitation-inhibition balance through the promotion of cap-dependent translation. Neuron. 2020;105:475–90.

    Article  CAS  PubMed  Google Scholar 

  33. Selimbeyoglu A, Kim CK, Inoue M, Lee SY, Hong A, Kauvar I, et al. Deisseroth K. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in cntnap2-deficient mice. Sci Transl Med. 2017;9:eaah6733.

  34. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giraldo-Chica M, Rogers BP, Damon SM, Landman BA, Woodward ND. Prefrontal-thalamic anatomical connectivity and executive cognitive function in schizophrenia. Biol Psychiatry. 2018;83:509–17.

    Article  PubMed  Google Scholar 

  36. Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015;87:684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ. Gaba system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev. 2012;36:2044–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoon T, Okada J, Jung MW, Kim JJ. Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learn Mem. 2008;15:97–105.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ferguson BR, Gao WJ. Thalamic control of cognition and social behavior via regulation of gamma-aminobutyric acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex. Biol Psychiatry. 2018;83:657–69.

    Article  CAS  PubMed  Google Scholar 

  40. Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim SY, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492:428–32.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the technical support by Dr. Bin Jiang at Zhongshan School of Medicine, Sun Yat-sen University.

Funding

This work was supported by the National Natural Science Foundation of China (81771144, 32200832), the Natural Science Foundation of Guangdong Province, China (2021A1515011134, 2022A1515012553).

Author information

Authors and Affiliations

Authors

Contributions

GQG, JFZ and FL conceived and designed the study. FL, XFZ and HJW performed most of the experiments. LHM, MYC, LYF, XYY and YQH helped to establish the CSDS animal models and perform behavioral tests. DLL, YFL and KMX contributed to data analysis. FL and JFZ wrote the paper. GQG reviewed and edited the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jifeng Zhang or Guoqing Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zheng, X., Wang, H. et al. Mediodorsal thalamus projection to medial prefrontal cortical mediates social defeat stress-induced depression-like behaviors. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01829-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01829-y

Search

Quick links