Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stress integration by an ascending adrenergic-melanocortin circuit

Abstract

Stress is thought to be an important contributing factor for eating disorders; however, neural substrates underlying the complex relationship between stress and appetite are not fully understood. Using in vivo recordings from awake behaving mice, we show that various acute stressors activate catecholaminergic nucleus tractus solitarius (NTSTH) projections in the paraventricular hypothalamus (PVH). Remarkably, the resulting adrenergic tone inhibits MC4R-expressing neurons (PVHMC4R), which are known for their role in feeding suppression. We found that PVHMC4R silencing encodes negative valence in sated mice and is required for avoidance induced by visceral malaise. Collectively, these findings establish PVHMC4R neurons as an effector of stress-activated brainstem adrenergic input in addition to the well-established hypothalamic-pituitary-adrenal axis. Convergent modulation of stress and feeding by PVHMC4R neurons implicates NTSTH → PVHMC4R input in stress-associated appetite disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stress robustly activates NTSTH → PVH axons.
Fig. 2: Stress evokes noradrenergic release onto PVHMC4R neurons.
Fig. 3: PVHMC4R neurons are inhibited by stress.
Fig. 4: PVHMC4R silencing encodes negative valence.
Fig. 5: PVHMC4R inhibition is required for LiCl-induced avoidance.

Similar content being viewed by others

References

  1. Goddard AW, Ball SG, Martinez J, Robinson MJ, Yang CR, Russell JM, et al. Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety. 2010;27:339–50.

    Article  CAS  PubMed  Google Scholar 

  2. Pruccoli J, Parmeggiani A, Cordelli DM, Lanari M. The Role of the Noradrenergic System in Eating Disorders: A Systematic Review. Int J Mol Sci. 2021;22:11086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Razzoli M, Bartolomucci A. The Dichotomous Effect of Chronic Stress on Obesity. Trends Endocrinol Metab. 2016;27:504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dallman MF. Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab. 2010;21:159–65.

    Article  CAS  PubMed  Google Scholar 

  5. Dayas CV, Buller KM, Day TA. Hypothalamic paraventricular nucleus neurons regulate medullary catecholamine cell responses to restraint stress. J Comp Neurol. 2004;478:22–34.

    Article  PubMed  Google Scholar 

  6. Pezzone MA, Lee WS, Hoffman GE, Pezzone KM, Rabin BS. Activation of brainstem catecholaminergic neurons by conditioned and unconditioned aversive stimuli as revealed by c-Fos immunoreactivity. Brain Res. 1993;608:310–8.

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto T, Shimura T, Sako N, Azuma S, Bai WZ, Wakisaka S. C-fos expression in the rat brain after intraperitoneal injection of lithium chloride. NeuroReport. 1992;3:1049–52.

    Article  CAS  PubMed  Google Scholar 

  8. Swank MW, Schafe GE, Bernsterin IL. c-Fos induction in response to taste stimuli previously paired with amphetamine or LiCl during taste aversion learning. Brain Res. 1995;673:251–61.

    Article  CAS  PubMed  Google Scholar 

  9. Pacak K, Palkovits M, Kopin IJ, Goldstein DS. Stress-Induced Norepinephrine Release in the Hypothalamic Paraventricular Nucleus and Pituitary-Adrenocortical and Sympathoadrenal Activity: In Vivo Microdialysis Studies. Front Neuroendocrinol. 1995;16:89–150.

    Article  CAS  PubMed  Google Scholar 

  10. Nakata T, Berard W, Kogosov E, Alexander N. Cardiovascular change and hypothalamic norepinephrine release in response to enviornmental stress. Am J Phys. 1993;26:784–89.

    Google Scholar 

  11. Pacak K, Palkovits M, Kvetnansky R, Yadid G, Kopin IJ, Goldstein DS. Effects of Various Stressors on In Vivo Norepinephrine Release in the Hypothalamic Paraventricular Nucleus and on the Pituitary-Adrenocortical Axis. Ann N Y Acad Sci. 1995;771:115–30.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev. 2009;89:535–606.

    Article  CAS  PubMed  Google Scholar 

  13. Myers B, Scheimann JR, Franco-Villanueva A, Herman JP. Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses. Neurosci Biobehav Rev. 2017;74:366–75.

    Article  PubMed  Google Scholar 

  14. Fuzesi T, Daviu N, Wamsteeker Cusulin JI, Bonin RP, Bains JS. Hypothalamic CRH neurons orchestrate complex behaviours after stress. Nat Commun. 2016;7:11937.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Bains JS, Wamsteeker Cusulin JI, Inoue W. Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci. 2015;16:377–88.

    Article  CAS  PubMed  Google Scholar 

  16. Ritter S, Watts AG, Dinh TT, Sanchez-Watts G, Pedrow C. Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion. Endocrinology. 2003;144:1357–67.

    Article  CAS  PubMed  Google Scholar 

  17. Balcita-Pedicino JJ, Rinaman L. Noradrenergic axon terminals contact gastric preautonomic neurons in the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol. 2007;501:608–18.

    Article  CAS  PubMed  Google Scholar 

  18. Raby WN, Renaud LP. Nucleus tractus solitarius innervation of supraoptic nucleus: anatomical and electrophysiological studies in the rat suggest differential innervation of oxytocin and vasopressin neurons. Prog Brain Res. 1989;81:319–27.

    Article  CAS  PubMed  Google Scholar 

  19. Fuzesi T, Wittmann G, Lechan RM, Liposits Z, Fekete C. Noradrenergic innervation of hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons in rats. Brain Res. 2009;1294:38–44.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wittmann G. Regulation of hypophysiotrophic corticotrophin-releasing hormone- and thyrotrophin-releasing hormone-synthesising neurones by brainstem catecholaminergic neurones. J Neuroendocrinol. 2008;20:952–60.

    Article  CAS  PubMed  Google Scholar 

  21. Sayar-Atasoy N, Laule C, Aklan I, Kim H, Yavuz Y, Ates T, et al. Adrenergic modulation of melanocortin pathway by hunger signals. Nat Commun. 2023;14:6602.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Savitt JM, Jang SS, Mu W, Dawson VL, Dawson TM. Bcl-x is required for proper development of the mouse substantia nigra. J Neurosci. 2005;25:6721–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garfield AS, Li C, Madara JC, Shah BP, Webber E, Steger JS, et al. A neural basis for melanocortin-4 receptor-regulated appetite. Nat Neurosci. 2015;18:863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robertson SD, Plummer NW, de Marchena J, Jensen P. Developmental origins of central norepinephrine neuron diversity. Nat Neurosci. 2013;16:1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  CAS  PubMed  Google Scholar 

  26. Aklan I, Sayar Atasoy N, Yavuz Y, Ates T, Coban I, Koksalar F, et al. NTS Catecholamine Neurons Mediate Hypoglycemic Hunger via Medial Hypothalamic Feeding Pathways. Cell Metab. 2020;31:313–26 e5.

    Article  CAS  PubMed  Google Scholar 

  27. Aklan I, Sayar-Atasoy N, Deng F, Kim H, Yavuz Y, Rysted J, et al. Dorsal raphe serotonergic neurons suppress feeding through redundant forebrain circuits. Mol Metab. 2023;69:101676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Betley JN, Xu S, Cao ZFH, Gong R, Magnus CJ, Yu Y, et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature. 2015;521:180–85.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Nam MH, Han KS, Lee J, Won W, Koh W, Bae JY, et al. Activation of Astrocytic mu-Opioid Receptor Causes Conditioned Place Preference. Cell Rep. 2019;28:1154–66 e5.

    Article  CAS  PubMed  Google Scholar 

  30. McCann MJ, Verbalis JG, Stricker EM. LiCl and CCK inhibit gastric emptying and feeding and stimulate OT secretion in rats. Am J Physiol Regul Integr Comp Physiol. 1989;256:R463–8.

    Article  CAS  Google Scholar 

  31. Feng J, Dong H, Lischinsky J, Zhou J, Deng F, Zhuang C, et al. Monitoring norepinephrine release in vivo using next-generation GRAB-NE sensors. BioRxiv. 2023.

  32. Rinaman L. Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol. 2011;300:R222–35.

    Article  CAS  PubMed  Google Scholar 

  33. Holt MK, Rinaman L. The role of nucleus of the solitary tract glucagon-like peptide-1 and prolactin-releasing peptide neurons in stress: anatomy, physiology and cellular interactions. Br J Pharmacol. 2022;179:642–58.

    Article  CAS  PubMed  Google Scholar 

  34. Maniscalco JW, Rinaman L. Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiol Behav. 2017;176:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gasparini S, Howland JM, Thatcher AJ, Geerling JC. Central afferents to the nucleus of the solitary tract in rats and mice. J Comp Neurol. 2020;528:2708–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paez X, Stanley BG, Leibowitz SF. Microdialysis analysis of norepinephrine levels in the paraventricular nucleus in association with food intake at dark onset. Brain Res. 1993;606:167–70.

    Article  CAS  PubMed  Google Scholar 

  37. Leibowitz SF, Hammer NJ, Chang K. Feeding Behavior Induced by Central Norepinephrine Injection is Attenuated by Discrete Lesions in the Hypothalamic Paraventricular Nucleus. Pharmacol Biochem Behav. 1983;19:945–50.

    Article  CAS  PubMed  Google Scholar 

  38. Cole RL, Sawchenko PE. Neurotransmitter Regulation of Cellular Activation and Neuropeptide Gene Expression in the Paraventricular Nucleus of the Hypothalamus. J Neurosci. 2002;22:959–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Itoi K, Suda T, Tozawa F, Dobashi I, Ohmori N, Sakai Y, et al. Microinjection of Norepinephrine into the Paraventricular Nucleus of the Hypothalamus Stimulates Corticotropin Releasing Factor Gene Expression in Conscious Rats. Endocrinology. 1994;135:2177–82.

    Article  CAS  PubMed  Google Scholar 

  40. Leibowitz SF. Paraventricular Nucleus: A Primary Site Mediating Adrenergic Stimulation of Feeding and Drinking. Pharmacol Biochem Behav. 1978;2:163–75.

  41. Chen J, Cheng M, Wang L, Zhang L, Xu D, Cao P, et al. A Vagal-NTS Neural Pathway that Stimulates Feeding. Curr Biol. 2020;30:3986–98 e5.

    Article  CAS  PubMed  Google Scholar 

  42. Roman CW, Derkach VA, Palmiter RD. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat Commun. 2016;7:11905.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Murphy S, Collis Glynn M, Dixon TN, Grill HJ, McNally GP, Ong ZY Nucleus of the solitary tract A2 neurons control feeding behaviors via projections to the paraventricular hypothalamus. Neuropsychopharmacology. 2022;48:351–61.

  44. Rinaman L. Hindbrain noradrenergic lesions attenuate anorexia and alter central cFos expression in rats after gastric viscerosensory stimulation. J Neurosci. 2003;23:10084–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wellman PJ, Davies BT, Morien A, McMahon L. Modulation of feeding by hypothalamic paraventricular nucleus a1- and a2-adrenergic receptors. Life Sciences. 1993;53:669–79.

    Article  CAS  PubMed  Google Scholar 

  46. Pace SA, Myers B. Hindbrain adrenergic/noradrenergic control of integrated endocrine and autonomic stress responses. Endocrinology. 2023;165:bqad178.

    Article  PubMed  Google Scholar 

  47. Li C, Navarrete J, Liang-Guallpa J, Lu C, Funderburk SC, Chang RB, et al. Defined Paraventricular Hypothalamic Populations Exhibit Differential Responses to Food Contingent on Caloric State. Cell Metab. 2019;29:681–94 e5.

    Article  CAS  PubMed  Google Scholar 

  48. Xu S, Yang H, Menon V, Lemire AL, Wang L, Henry FE, et al. Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science. 2020;370:eabb2494.

    Article  CAS  PubMed  Google Scholar 

  49. Kovacs KJ. CRH: the link between hormonal-, metabolic- and behavioral responses to stress. J Chem Neuroanat. 2013;54:25–33.

    Article  CAS  PubMed  Google Scholar 

  50. Sweeney P, Chen C, Rajapakse I, Cone RD. Network dynamics of hypothalamic feeding neurons. Proc Natl Acad Sci USA. 2021;118:e2011140118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li MM, Madara JC, Steger JS, Krashes MJ, Balthasar N, Campbell JN, et al. The Paraventricular Hypothalamus Regulates Satiety and Prevents Obesity via Two Genetically Distinct Circuits. Neuron. 2019;102:653–67 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Contreras M, Ceric F, Torrealba F. Inactivation of the Interoceptive Insula Disrupts Drug Craving and Malaise Induced by Lithium. Science. 2007;318:4.

    Article  Google Scholar 

  53. Meachum C, Bernstein I. Behavioral Conditioned Responses to Contextual and Odor Stimuli Paired with LiCl Administration. Physiol Behav. 1992;52:5.

    Article  Google Scholar 

  54. Fang X, Jiang S, Wang J, Bai Y, Kim CS, Blake D, et al. Chronic unpredictable stress induces depression-related behaviors by suppressing AgRP neuron activity. Mol Psychiatry. 2021;26:2299–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fang X, Chen Y, Wang J, Zhang Z, Bai Y, Denney K, et al. Increased intrinsic and synaptic excitability of hypothalamic POMC neurons underlies chronic stress-induced behavioral deficits. Mol Psychiatry. 2023;28:1365–82.

    Article  CAS  PubMed  Google Scholar 

  56. Yam KY, Ruigrok SR, Ziko I, De Luca SN, Lucassen PJ, Spencer SJ, et al. Ghrelin and hypothalamic NPY/AgRP expression in mice are affected by chronic early-life stress exposure in a sex-specific manner. Psychoneuroendocrinology. 2017;86:73–77.

    Article  CAS  PubMed  Google Scholar 

  57. Liu J, Garza JC, Truong HV, Henschel J, Zhang W, Lu XY. The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology. 2007;148:5531–40.

    Article  CAS  PubMed  Google Scholar 

  58. Di Bonaventura EM, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, et al. Investigating the role of the central melanocortin system in stress and stress-related disorders. Pharmacol Res. 2022;185:106521.

    Article  Google Scholar 

  59. Lee EJ, Hanchate NK, Kondoh K, Tong APS, Kuang D, Spray A, et al. A psychological stressor conveyed by appetite-linked neurons. Sci Adv. 2020;6:eaay5366.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Lim BK, Huang KW, Grueter BA, Rothwell PE, Malenka RC. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature. 2012;487:183–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Liu J, Garza JC, Li W, Lu XY. Melanocortin-4 receptor in the medial amygdala regulates emotional stress-induced anxiety-like behaviour, anorexia and corticosterone secretion. Int J Neuropsychopharmacol. 2013;16:105–20.

    Article  CAS  PubMed  Google Scholar 

  62. Cho D, O’Berry K, Possa-Paranhos IC, Butts J, Palanikumar N, Sweeney P. Paraventricular thalamic MC3R circuits link energy homeostasis with anxiety-related behavior. J Neurosci. 2023;43:6280–96.

    Article  CAS  PubMed  Google Scholar 

  63. Jeong JY, Lee DH, Kang SS. Effects of chronic restraint stress on body weight, food intake, and hypothalamic gene expressions in mice. Endocrinol Metab. 2013;28:288–96.

    Article  Google Scholar 

  64. Silva MSD, Zimmerman PM, Meguid MM, Nandi J, Ohinata K, Xu Y, et al. Anorexia in Space and Possible Etiologies: An Overview. Nutrition. 2002;18:805–13.

    Article  PubMed  Google Scholar 

  65. Weatherford SC, Chiruzzo FY, Laughton WB. Satiety induced by endogenous and exogenous cholecystokinin is mediated by CCK-A receptors in mice. Am J Phys Regul Integr Comp Physiol. 1992;262:R574–8.

    Article  CAS  Google Scholar 

  66. Silver AJ, Flood JF, Song AM, Morley JE. Evidence for a physiological role for CCK in the regulation of food intake in mice. Am J Phys Regul Integr Comp Physiol. 1989;256:R646–52.

    Article  CAS  Google Scholar 

  67. Moran TH, McHugh PR. Cholecystokinin suppresses food intake by inhibiting gastric emptying. Am J Phys Regul Integr Comp Physiol. 1982;242:R491–7.

    Article  CAS  Google Scholar 

  68. Possa-Paranhos IC, Catalbas K, Butts J, O’Berry K, Sweeney P. Establishment of Restraint Stress-induced Anorexia and Social Isolation-induced Anorexia Mouse Models. Bio Protocol. 2023;13:e4597.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Singh U, Jiang J, Saito K, Toth BA, Dickey JE, Rodeghiero SR, et al. Neuroanatomical organization and functional roles of PVN MC4R pathways in physiological and behavioral regulations. Mol Metab. 2022;55:101401.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kamal Rahmouni and Dr. Deng-Fu Guo for providing Mc4r-cre x ai14 mice. We thank Dr. Huxing Cui and Dr. Uday Singh for providing Mc4r-cre mice.

Funding

This work is supported by NIH to D.A. R01DK126740 and NIH to C.L. F31HL168820.

Author information

Authors and Affiliations

Authors

Contributions

CL performed behavioral experiments; CL, NSA performed in vivo imaging experiments; CL, IA performed surgeries; CL performed electrophysiology experiments; CL, HK, TA performed post hoc analysis; NSA performed genotyping; DD managed mouse colony; DA, CL, NSA conceived experiments; DA, CL, NSA analyzed data; DA and CL wrote the manuscript.

Corresponding author

Correspondence to Deniz Atasoy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laule, C., Sayar-Atasoy, N., Aklan, I. et al. Stress integration by an ascending adrenergic-melanocortin circuit. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01810-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01810-9

Search

Quick links