Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparative rhythmic transcriptome profiling of human and mouse striatal subregions

Abstract

The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). In mice, this roughly corresponds to the dorsal medial striatum (DMS), dorsal lateral striatum (DLS), and ventral striatum (NAc). Each of these structures have some overlapping and distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a “time-of-death” approach to identify diurnal rhythms in RNA transcripts in these three human striatal subregions. Here, we identify molecular rhythms across similar striatal subregions collected from C57BL/6J mice across 6 times of day and compare results to the human striatum. Pathway analysis indicates a large degree of overlap between species in rhythmic transcripts involved in processes like cellular stress, energy metabolism, and translation. Notably, a striking finding in humans is that small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) are among the most highly rhythmic transcripts in the NAc and this is not conserved in mice, suggesting the rhythmicity of RNA processing in this region could be uniquely human. Furthermore, the peak timing of overlapping rhythmic genes is altered between species, but not consistently in one direction. Taken together, these studies reveal conserved as well as distinct transcriptome rhythms across the human and mouse striatum and are an important step in understanding the normal function of diurnal rhythms in humans and model organisms in these regions and how disruption could lead to pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overlap in rhythmic transcripts between striatal regions in mice.
Fig. 2: Overlapping and distinct rhythmic transcripts and pathways in human and mouse striatum.
Fig. 3: Shift in timing of core clock gene expression between the human and mouse striatum.
Fig. 4: Phase relationships within striatal subregions of mouse and human.
Fig. 5: Peak timing differences between human and mouse striatum.

Similar content being viewed by others

References

  1. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18:7–21.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Casale AD, Kotzalidis GD, Rapinesi C, Serata D, Ambrosi E, Simonetti A, et al. Functional neuroimaging in obsessive-compulsive disorder. Neuropsychobiology. 2011;64:61–85.

    Article  PubMed  Google Scholar 

  3. Cooper S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics. 2017;14:687–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 2018;46:S30–S33.

    Article  PubMed  Google Scholar 

  5. Middleton FA, Strick PL. Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. 2000;42:183–200.

    Article  CAS  PubMed  Google Scholar 

  6. Weinstein JJ, Chohan MO, Slifstein M, Kegeles LS, Moore H, Abi-Dargham A. Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry. 2017;81:31–42.

    Article  CAS  PubMed  Google Scholar 

  7. Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019;20:49–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roenneberg T, Merrow M. The circadian clock and human health. Curr Biol. 2016;26:R432–R443.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi JS. Molecular neurobiology and genetics of circadian rhythms in mammals. Annu Rev Neurosci. 1995;18:531–53.

    Article  CAS  PubMed  Google Scholar 

  10. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15:R271–R277.

    Article  CAS  PubMed  Google Scholar 

  11. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109:307–20.

    Article  CAS  PubMed  Google Scholar 

  12. Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol. 2008;4:e1000193.

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  13. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA. 2004;101:5339–46.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen C-Y, Logan RW, Ma T, Lewis DA, Tseng GC, Sibille E, et al. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci USA. 2016;113:206–11.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ketchesin KD, Zong W, Hildebrand MA, Seney ML, Cahill KM, Scott MR, et al. Diurnal rhythms across the human dorsal and ventral striatum. Proc Natl Acad Sci USA. 2021;118:e2016150118.

    Article  CAS  PubMed  Google Scholar 

  16. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA. 2013;110:9950–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seney ML, Cahill K, Enwright JF, Logan RW, Huo Z, Zong W, et al. Diurnal rhythms in gene expression in the prefrontal cortex in schizophrenia. Nat Commun. 2019;10:3355.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018;359:eaao0318.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mitchell IJ, Cooper AJ, Griffiths MR. The selective vulnerability of striatopallidal neurons. Prog Neurobiol. 1999;59:691–719.

    Article  CAS  PubMed  Google Scholar 

  20. Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008;31:359–87.

    Article  CAS  PubMed  Google Scholar 

  21. Hauber W, Schmidt WJ. Differential effects of lesions of the dorsomedial and dorsolateral caudate-putamen on reaction time performance in rats. Behav Brain Res. 1994;60:211–5.

    Article  CAS  PubMed  Google Scholar 

  22. Alegre-Cortés J, Sáez M, Montanari R, Reig R. Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum. eLife. 2021;10:e60580.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cornelissen G. Cosinor-based rhythmometry. Theor Biol Med Model. 2014;11:16.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ketchesin KD, Zong W, Hildebrand MA, Scott MR, Seney ML, Cahill KM, et al. Diurnal alterations in gene expression across striatal subregions in psychosis. Biol Psychiatry. 2022. https://doi.org/10.1016/j.biopsych.2022.08.013.

  26. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Yamanishi K, Doe N, Sumida M, Watanabe Y, Yoshida M, Yamamoto H, et al. Hepatocyte nuclear factor 4 alpha is a key factor related to depression and physiological homeostasis in the mouse brain. PLoS ONE. 2015;10:e0119021.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pan Y, Ballance H, Meng H, Gonzalez N, Kim SM, Abdurehman L, et al. 12-h clock regulation of genetic information flow by XBP1s. PLoS Biol. 2020;18:e3000580.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Díaz-Hung ML, Martínez G, Hetz C. Chapter Two - Emerging roles of the unfolded protein response (UPR) in the nervous system: a link with adaptive behavior to environmental stress? In: Kepp O, Galluzzi L, editors. International review of cell and molecular biology, Academic Press; 2020, vol. 350 p. 29–61.

  30. Chaix A, Zarrinpar A, Panda S. The circadian coordination of cell biology. J Cell Biol. 2016;215:15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hombach S, Kretz M. Non-coding RNAs: Classification, biology and functioning. In: Slaby O, Calin GA, editors. Non-coding RNAs in colorectal cancer, Cham: Springer International Publishing; 2016. p. 3–17.

  32. Ferretti V, Perri V, Cristofoli A, Vetere G, Fragapane P, Oliverio A, et al. Phosphorylation of S845 GluA1 AMPA receptors modulates spatial memory and structural plasticity in the ventral striatum. Brain Struct Funct. 2015;220:2653–61.

    Article  CAS  PubMed  Google Scholar 

  33. Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, et al. Evolution of increased glia–neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA. 2006;103:13606–11.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524:3865–95.

    Article  Google Scholar 

  35. Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B, Schiller M, et al. Activation of the reward system boosts innate and adaptive immunity. Nat Med. 2016;22:940–4.

    Article  CAS  PubMed  Google Scholar 

  36. Ben-Shaanan TL, Schiller M, Azulay-Debby H, Korin B, Boshnak N, Koren T, et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat Commun. 2018;9:2723.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Brod S, Rattazzi L, Piras G, D’Acquisto F. ‘As above, so below’ examining the interplay between emotion and the immune system. Immunology. 2014;143:311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gremel CM, Costa RM. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun. 2013;4:2264.

    Article  ADS  PubMed  Google Scholar 

  39. Pooters T, Gantois I, Vermaercke B, D’Hooge R. Inability to acquire spatial information and deploy spatial search strategies in mice with lesions in dorsomedial striatum. Behav Brain Res. 2016;298:134–41.

    Article  PubMed  Google Scholar 

  40. Carlén M. What constitutes the prefrontal cortex? Science. 2017;358:478–82.

    Article  ADS  PubMed  Google Scholar 

  41. Wang N, Langfelder P, Stricos M, Ramanathan L, Richman JB, Vaca R, et al. Mapping brain gene coexpression in daytime transcriptomes unveils diurnal molecular networks and deciphers perturbation gene signatures. Neuron. 2022;110:3318–3338.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

This work was funded by the National Institutes of Health DA039865, DA046346, MH111601, MH106460, NS127064 (PI: CAM), and MH128763 (PI: KDK), the Brain and Behavior Research Foundation (30823 (P&S Fund), PI: KDK), and the Wood Next Foundation (PI: CAM) (https://www.woodnext.org/).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KAP, CAM; Methodology: GT, CAM; Data acquisition: KAP, LMD, MRS, VGS, JNB, AJC, SMK, KDK; Data analysis: KAP, WZ; Writing: KAP, LMD, MRS, KDK, CAM.

Corresponding author

Correspondence to Colleen A. McClung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, K.A., Zong, W., Depoy, L.M. et al. Comparative rhythmic transcriptome profiling of human and mouse striatal subregions. Neuropsychopharmacol. 49, 796–805 (2024). https://doi.org/10.1038/s41386-023-01788-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01788-w

Search

Quick links