Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of asparagine endopeptidase (AEP) effectively treats sporadic Alzheimer’s disease in mice

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with cognitive dysfunction as its major clinical symptom. However, there is no disease-modifying small molecular medicine to effectively slow down progression of the disease. Here, we show an optimized asparagine endopeptidase (AEP, also known as δ-secretase) inhibitor, #11 A, that displays an orderly in vivo pharmacokinetics/pharmacodynamics (PK/PD) relationship and robustly attenuates AD pathologies in a sporadic AD mouse model. #11 A is brain permeable with great oral bioavailability. It blocks AEP cleavage of APP and Tau dose-dependently, and significantly decreases Aβ40 and Aβ42 and p-Tau levels in APP/PS1 and Tau P301S mice after oral administration. Notably, #11 A strongly inhibits AEP and prevents mouse APP and Tau fragmentation by AEP, leading to reduction of mouse Aβ42 (mAβ42), mAβ40 and mouse p-Tau181 levels in Thy1-ApoE4/C/EBPβ transgenic mice in a dose-dependent manner. Repeated oral administration of #11 A substantially decreases mAβ aggregation as validated by Aβ PET assay, Tau pathology, neurodegeneration and brain volume reduction, resulting in alleviation of cognitive impairment. Therefore, our results support that #11 A is a disease-modifying preclinical candidate for pharmacologically treating AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo pharmacokinetics (PK) profiles of #11 A by the treatment of intravenous (I.V.) injection and oral administration (P.O.) in CD1 mouse.
Fig. 2: Acute treatment with #11 A inhibits activity of AEP and its downstream targets in Tau P301S mouse.
Fig. 3: Acute treatment with #11 A inhibits activity of AEP and its downstream targets in Thy1-ApoE4/C/EBPβ Tg mouse.
Fig. 4: Repeated treatment with #11 A inhibits Aβ deposition and Tau pathology in Thy1-ApoE4/C/EBPβ Tg mouse.
Fig. 5: Repeated treatment with #11 A inhibits neuronal loss and improve cognitive function in Thy1-ApoE4/C/EBPβ Tg mouse.

Similar content being viewed by others

References

  1. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403.

    Article  PubMed  CAS  Google Scholar 

  2. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Querfurth HW, LaFerla FM. MECHANISMS OF DISEASE Alzheimer’s disease. N. Engl J Med. 2010;362:329–44.

    Article  PubMed  CAS  Google Scholar 

  5. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397:1577–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cummings J, Lee G, Nahed P, Kambar M, Zhong K, Fonseca J, et al. Alzheimer’s disease drug development pipeline: 2022. Alzheimer’s Dement. 2022;8:e12295.

    Article  Google Scholar 

  7. Athar T, Al Balushi K, Khan SA. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol Biol Rep. 2021;48:5629–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.

    Article  PubMed  Google Scholar 

  9. Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384:1691–704.

    Article  PubMed  CAS  Google Scholar 

  10. Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. Jama. 2023;330:512–27.

    Article  PubMed  CAS  Google Scholar 

  11. Liu Z, Jang SW, Liu X, Cheng D, Peng J, Yepes M, et al. Neuroprotective actions of PIKE-L by inhibition of SET proteolytic degradation by asparagine endopeptidase. Mol Cell. 2008;29:665–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat Med. 2014;20:1254–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhang Z, Song M, Liu X, Su Kang S, Duong DM, Seyfried NT, et al. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat Commun. 2015;6:8762.

    Article  PubMed  CAS  Google Scholar 

  14. Xia Y, Wang ZH, Zhang Z, Liu X, Yu SP, Wang JZ, et al. Delta- and beta- secretases crosstalk amplifies the amyloidogenic pathway in Alzheimer’s disease. Prog Neurobiol. 2021;204:102113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Blennow K, Chen C, Cicognola C, Wildsmith KR, Manser PT, Bohorquez SMS, et al. Cerebrospinal fluid tau fragment correlates with tau PET: a candidate biomarker for tangle pathology. Brain. 2020;143:650–60.

    Article  PubMed  Google Scholar 

  16. Leuzy A, Cicognola C, Chiotis K, Saint-Aubert L, Lemoine L, Andreasen N, et al. Longitudinal tau and metabolic PET imaging in relation to novel CSF tau measures in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2019;46:1152–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Simrén J, Brum WS, Ashton NJ, Benedet AL, Karikari TK, Kvartsberg H, et al. CSF tau368/total-tau ratio reflects cognitive performance and neocortical tau better compared to p-tau181 and p-tau217 in cognitively impaired individuals. Alzheimer’s Res Ther. 2022;14:192.

    Article  Google Scholar 

  18. Wang ZH, Gong K, Liu X, Zhang Z, Sun X, Wei ZZ, et al. C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer’s disease. Nat Commun. 2018;9:1784.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xia Y, Wang ZH, Zhang J, Liu X, Yu SP, Ye KX, et al. C/EBPβ is a key transcription factor for APOE and preferentially mediates ApoE4 expression in Alzheimer’s disease. Mol Psychiatry. 2021;26:6002–22.

    Article  PubMed  CAS  Google Scholar 

  20. Wang ZH, Xia Y, Liu P, Liu X, Edgington-Mitchell L, Lei K, et al. ApoE4 activates C/EBPβ/δ-secretase with 27-hydroxycholesterol, driving the pathogenesis of Alzheimer’s disease. Prog Neurobiol. 2021;202:102032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Huang YA, Zhou B, Nabet AM, Wernig M, Südhof TC. Differential signaling mediated by ApoE2, ApoE3, and ApoE4 in human neurons parallels Alzheimer’s disease risk. J Neurosci. 2019;39:7408–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zalocusky KA, Najm R, Taubes AL, Hao Y, Yoon SY, Koutsodendris N, et al. Neuronal ApoE upregulates MHC-I expression to drive selective neurodegeneration in Alzheimer’s disease. Nat Neurosci. 2021;24:786–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang ZH, Xia Y, Wu Z, Kang SS, Zhang JC, Liu P, et al. Neuronal ApoE4 stimulates C/EBPβ activation, promoting Alzheimer’s disease pathology in a mouse model. Prog Neurobiol. 2022;209:102212.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Z, Obianyo O, Dall E, Du Y, Fu H, Liu X, et al. Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer’s disease. Nat Commun. 2017;8:14740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lei K, Kang SS, Ahn EH, Chen C, Liao J, Liu X, et al. C/EBPβ/AEP signaling regulates the oxidative stress in malignant cancers, stimulating the metastasis. Mol Cancer Ther. 2021;20:1640–52.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Z, Kang SS, Liu X, Ahn EH, Zhang Z, He L, et al. Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson’s disease. Nat Struct Mol Biol. 2017;24:632–42.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kang SS, Wu Z, Liu X, Edgington-Mitchell L, Ye K. Treating Parkinson’s disease via activation of BDNF/TrkB signaling pathways and inhibition of delta-secretase. Neurotherapeutics. 2022;19:1283–129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Liao J, Chen C, Ahn EH, Liu X, Li H, Edgington-Mitchell LE, et al. Targeting both BDNF/TrkB pathway and delta-secretase for treating Alzheimer’s disease. Neuropharmacology. 2021;197:108737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Xia Y, Wang ZH, Liu P, Edgington-Mitchell L, Liu X, Wang XC, et al. TrkB receptor cleavage by delta-secretase abolishes its phosphorylation of APP, aggravating Alzheimer’s disease pathologies. Mol Psychiatry. 2021;26:2943–63.

    Article  PubMed  CAS  Google Scholar 

  30. Qian Z, Li H, Yang H, Yang Q, Lu Z, Wang L, et al. Osteocalcin attenuates oligodendrocyte differentiation and myelination via GPR37 signaling in the mouse brain. Sci Adv. 2021;7:eabi5811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Casali BT, Landreth GE. Abeta extraction from murine brain homogenates. Bio Protoc. 2016;6:e1787.

    Article  PubMed  Google Scholar 

  32. Sahara N, Kimura T. Biochemical properties of pathology-related tau species in tauopathy brains: an extraction protocol for tau oligomers and aggregates. Methods Mol Biol. 2018;1779:435–45.

    Article  PubMed  CAS  Google Scholar 

  33. Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M. Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res. 1997;49:71–81.

    Article  PubMed  CAS  Google Scholar 

  34. Wang ZH, Xiang J, Liu X, Yu SP, Manfredsson FP, Sandoval IM, et al. Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-secretase by upregulating C/EBPβ in Alzheimer’s disease. Cell Rep. 2019;28:655–69.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Devi L, Ohno M. TrkB reduction exacerbates Alzheimer’s disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice. Transl Psychiatry. 2015;5:e562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Xiang J, Wang ZH, Ahn EH, Liu X, Yu SP, Manfredsson FP, et al. Delta-secretase-cleaved Tau antagonizes TrkB neurotrophic signalings, mediating Alzheimer’s disease pathologies. Proc Natl Acad Sci USA. 2019;116:9094–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wang ZH, Wu W, Kang SS, Liu X, Wu Z, Peng J, et al. BDNF inhibits neurodegenerative disease-associated asparaginyl endopeptidase activity via phosphorylation by AKT. JCI Insight. 2018;3:e99007.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Murthy RV, Arbman G, Gao J, Roodman GD, Sun XF. Legumain expression in relation to clinicopathologic and biological variables in colorectal cancer. Clin Cancer Res. 2005;11:2293–9.

    Article  PubMed  CAS  Google Scholar 

  39. Liu C, Sun C, Huang H, Janda K, Edgington T. Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res. 2003;63:2957–64.

    PubMed  CAS  Google Scholar 

  40. Chen G, Kang SS, Wang Z, Ahn EH, Xia Y, Liu X, et al. Netrin-1 receptor UNC5C cleavage by active δ-secretase enhances neurodegeneration, promoting Alzheimer’s disease pathologies. Sci Adv. 2021;7:eabe4499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement (N Y). 2023;9:e12385.

    Article  Google Scholar 

  42. Xiong J, Kang SS, Wang Z, Liu X, Kuo TC, Korkmaz F, et al. FSH blockade improves cognition in mice with Alzheimer’s disease. Nature. 2022;603:470–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Simonsen AH, McGuire J, Podust VN, Hagnelius NO, Nilsson TK, Kapaki E, et al. A novel panel of cerebrospinal fluid biomarkers for the differential diagnosis of Alzheimer’s disease versus normal aging and frontotemporal dementia. Dement Geriatr Cogn Disord. 2007;24:434–40.

    Article  PubMed  CAS  Google Scholar 

  44. Miller G, Matthews SP, Reinheckel T, Fleming S, Watts C. Asparagine endopeptidase is required for normal kidney physiology and homeostasis. FASEB J. 2011;25:1606–17.

    Article  PubMed  CAS  Google Scholar 

  45. Chan CB, Abe M, Hashimoto N, Hao C, Williams IR, Liu X, et al. Mice lacking asparaginyl endopeptidase develop disorders resembling hemophagocytic syndrome. Proc Natl Acad Sci USA. 2009;106:468–73.

    Article  PubMed  CAS  Google Scholar 

  46. Manoury B, Mazzeo D, Li DN, Billson J, Loak K, Benaroch P, et al. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity. 2003;18:489–98.

    Article  PubMed  CAS  Google Scholar 

  47. Maehr R, Hang HC, Mintern JD, Kim YM, Cuvillier A, Nishimura M, et al. Asparagine endopeptidase is not essential for class II MHC antigen presentation but is required for processing of cathepsin L in mice. J Immunol. 2005;174:7066–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by Start-up fund from SIAT and the National Natural Science Foundation of China (32330040) to KY, the Guangdong Basic and Applied Basic Research Foundation (2023A1515030296) and the Shenzhen Government Basic Research Program (JCYJ20220531100802005) to ZQ, and the National Natural Science Foundation of China (32200928) to YL, and the “Hundred, Thousand and Ten Thousand” Science and Technology Major Special Project of Heilongjiang Province (No. 2020ZX07B01) to QL.

Author information

Authors and Affiliations

Authors

Contributions

KY conceived the project, designed the experiments, analyzed the data, and wrote the manuscript. ZQ designed and performed most of the experiments, analyzed the data and wrote the manuscript. BL performed the SiMoA experiments. XM and GW performed the LC-MS/MS analysis. JL performed part of the immunofluorescence staining experiments. YL and QL assisted with data analysis and interpretation. All the authors approved the manuscript.

Corresponding authors

Correspondence to Qian Luo or Keqiang Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Z., Li, B., Meng, X. et al. Inhibition of asparagine endopeptidase (AEP) effectively treats sporadic Alzheimer’s disease in mice. Neuropsychopharmacol. 49, 620–630 (2024). https://doi.org/10.1038/s41386-023-01774-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01774-2

Search

Quick links