Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The case for low-level BACE1 inhibition for the prevention of Alzheimer disease

Abstract

Alzheimer disease (AD) is the most common cause of dementia in older individuals (>65 years) and has a long presymptomatic phase. Preventive therapies for AD are not yet available, and potential disease-modifying therapies targeting amyloid-β plaques in symptomatic stages of AD have only just been approved in the United States. Small-molecule inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1; also known as β-secretase 1) reduce the production of amyloid-β peptide and are among the most advanced drug candidates for AD. However, to date all phase II and phase III clinical trials of BACE inhibitors were either concluded without benefit or discontinued owing to futility or the occurrence of adverse effects. Adverse effects included early, mild cognitive impairment that was associated with all but one inhibitor; preliminary results suggest that the cognitive effects are non-progressive and reversible. These discontinuations have raised questions regarding the suitability of BACE1 as a drug target for AD. In this Perspective, we discuss the status of BACE inhibitors and suggest ways in which the results of the discontinued trials can inform the development of future clinical trials of BACE inhibitors and related secretase modulators as preventative therapies. We also propose a series of experiments that should be performed to inform ‘go–no-go’ decisions in future trials with BACE inhibitors and consider the possibility that low levels of BACE1 inhibition could avoid adverse effects while achieving efficacy for AD prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stopping amyloid accumulation: slow and steady.

Similar content being viewed by others

References

  1. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. Cell 164, 603–615 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Hussain, I. et al. Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol. Cell. Neurosci. 14, 419–427 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Sinha, S. et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402, 537–540 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Vassar, R. et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Yan, R. et al. Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402, 533–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Das, B. & Yan, R. A close look at BACE1 inhibitors for Alzheimer’s disease treatment. CNS Drugs 33, 251–263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egan, M. F. et al. Randomized trial of verubecestat for prodromal Alzheimer’s disease. N. Engl. J. Med. 380, 1408–1420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Henley, D. et al. Preliminary results of a trial of atabecestat in preclinical Alzheimer’s disease. N. Engl. J. Med. 380, 1483–1485 (2019).

    Article  PubMed  Google Scholar 

  10. Knopman, D. S. Lowering of amyloid-beta by beta-secretase inhibitors - some informative failures. N. Engl. J. Med. 380, 1476–1478 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 341–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Coric, V. et al. Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol. 69, 1430–1440 (2012).

    Article  PubMed  Google Scholar 

  13. De Strooper, B. Lessons from a failed gamma-secretase Alzheimer trial. Cell 159, 721–726 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Kevin, D. et al. Preclinical validation of a potent γ-secretase modulator for Alzheimer’s disease prevention. J. Exp. Med. 218, e20202560 (2021).

    Article  CAS  Google Scholar 

  15. Graf, A. et al. Umibecestat in the API Generation program: worsening in RBANS and/or CDR on treatment reverses after wash-out. Alzheimers Dement. 16, e041140 (2020).

    Article  Google Scholar 

  16. Hampel, H. et al. Precision pharmacology for Alzheimer’s disease. Pharmacol. Res. 130, 331–365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eketjall, S. et al. AZD3293: a novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics. J. Alzheimers Dis. 50, 1109–1123 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kennedy, M. E. et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS beta-amyloid in animal models and in Alzheimer’s disease patients. Sci. Transl Med. 8, 363ra150 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Neumann, U. et al. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol. Med. 10, e9316 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Egan, M. F. et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 378, 1691–1703 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wessels, A. M. et al. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer disease: the AMARANTH and DAYBREAK-ALZ randomized clinical trials. JAMA Neurol. 77, 199–209 (2019).

    Article  PubMed Central  Google Scholar 

  22. Mintun, M. A. et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 384, 1691–1704 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Koskinas, K. C. et al. Effect of statins and non-statin LDL-lowering medications on cardiovascular outcomes in secondary prevention: a meta-analysis of randomized trials. Eur. Heart J. 39, 1172–1180 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Zuhl, A. M. et al. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of beta-secretase inhibitors. Nat. Commun. 7, 13042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai, J. et al. β-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Mol. Med. 4, 980–991 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eli Lilly & Company. Lilly voluntarily terminates phase II study for LY2886721, a beta secretase inhibitor being investigated as a treatment for Alzheimer’s disease. Lilly https://investor.lilly.com/static-files/32b60234-ea3c-4461-875d-87167528f516 (2013).

  27. Esterhazy, D. et al. Bace2 is a beta cell-enriched protease that regulates pancreatic beta cell function and mass. Cell Metab. 14, 365–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Stutzer, I. et al. Systematic proteomic analysis identifies beta-site amyloid precursor protein cleaving enzyme 2 and 1 (BACE2 and BACE1) substrates in pancreatic beta-cells. J. Biol. Chem. 288, 10536–10547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Voytyuk, I. et al. BACE2 distribution in major brain cell types and identification of novel substrates. Life Sci. Alliance 1, e201800026 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Farzan, M., Schnitzler, C. E., Vasilieva, N., Leung, D. & Choe, H. BACE2, a beta -secretase homolog, cleaves at the beta site and within the amyloid-beta region of the amyloid-beta precursor protein. Proc. Natl Acad. Sci. USA 97, 9712–9717 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan, R., Munzner, J. B., Shuck, M. E. & Bienkowski, M. J. BACE2 functions as an alternative alpha-secretase in cells. J. Biol. Chem. 276, 34019–34027 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Rochin, L. et al. BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells. Proc. Natl Acad. Sci. USA 110, 10658–10663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cebers, G. et al. Reversible and species-specific depigmentation effects of AZD3293, a BACE inhibitor for the treatment of Alzheimer’s disease, are related to BACE2 inhibition and confined to epidermis and hair. J. Prev. Alzheimers Dis. 3, 202–218 (2016).

    CAS  PubMed  Google Scholar 

  34. Shimshek, D. R. et al. Pharmacological BACE1 and BACE2 inhibition induces hair depigmentation by inhibiting PMEL17 processing in mice. Sci. Rep. 6, 21917 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuhn, P. H. et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 31, 3157–3168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, L. et al. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J. Biol. Chem. 287, 25927–25940 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hemming, M. L., Elias, J. E., Gygi, S. P. & Selkoe, D. J. Identification of beta-secretase (BACE1) substrates using quantitative proteomics. PLoS ONE 4, e8477 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tüshaus, J. et al. An optimized quantitative proteomics method establishes the cell type-resolved mouse brain secretome. EMBO J. 39, e105693 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rogers, M. B. Bump in the road or disaster? BACE inhibitors worsen cognition. AlzForum https://www.alzforum.org/news/conference-coverage/bump-road-or-disaster-bace-inhibitors-worsen-cognition (2018).

  40. Egan, M. F. et al. Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease. Alzheimers Res. Ther. 11, 68 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lopez Lopez, C. et al. The Alzheimer’s Prevention Initiative Generation Program: study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimers Dement. 5, 216–227 (2019).

    Article  Google Scholar 

  42. Sperling, R. et al. Findings of efficacy, safety, and biomarker outcomes of atabecestat in preclinical Alzheimer disease: a truncated randomized phase 2b/3 clinical trial. JAMA Neurol. 78, 293–301 (2021).

    Article  PubMed  Google Scholar 

  43. Wessels, A. M. et al. Cognitive outcomes in trials of two BACE inhibitors in Alzheimer’s disease. Alzheimers Dement. 16, 1483–1492 (2020).

    Article  PubMed  Google Scholar 

  44. Timmers, M. et al. Pharmacodynamics of atabecestat (JNJ-54861911), an oral BACE1 inhibitor in patients with early Alzheimer’s disease: randomized, double-blind, placebo-controlled study. Alzheimers Res. Ther. 10, 85 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lynch, S. Y. et al. Elenbecestat, a BACE inhibitor: results from a phase 2 study in subjects with mild cognitive impairment and mild-to-moderate dementia due to Alzheimer’s disease [abstract P4-389]. Alzheimers Dement. 14, 1623 (2018).

    Article  Google Scholar 

  46. Willis, B. et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of LY3202626, a novel BACE1 inhibitor, in healthy subjects and patients with Alzheimer’s disease [abstract P1-044]. Alzheimers Dement. 12, 418 (2016).

    Google Scholar 

  47. Rogers, M. B. Picking through the rubble, field tries to salvage BACE inhibitors. AlzForum https://www.alzforum.org/news/conference-coverage/picking-through-rubble-field-tries-salvage-bace-inhibitors (2019).

  48. Reiman, E. M. et al. The API Generation program: umibecestat treatment and discontinuation effects on hippocampal and whole brain volumes in the overall population and amyloid-negative APOE4 homozygotes. Alzheimers Dement. 16, e041142 (2020).

    Article  Google Scholar 

  49. Sur, C. et al. BACE inhibition causes rapid, regional, and non-progressive volume reduction in Alzheimer’s disease brain. Brain 143, 3816–3826 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. McConlogue, L. et al. Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP transgenic mice. J. Biol. Chem. 282, 26326–26334 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Cao, L., Rickenbacher, G. T., Rodriguez, S., Moulia, T. W. & Albers, M. W. The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease. Sci. Rep. 2, 231 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dominguez, D. et al. Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J. Biol. Chem. 280, 30797–30806 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Laird, F. M. et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci. 25, 11693–11709 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu, X., Das, B., Hou, H., He, W. & Yan, R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J. Exp. Med. 215, 927–940 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lombardo, S. et al. BACE1 partial deletion induces synaptic plasticity deficit in adult mice. Sci. Rep. 9, 19877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barao, S. et al. Antagonistic effects of BACE1 and APH1B-gamma-secretase control axonal guidance by regulating growth cone collapse. Cell Rep. 12, 1367–1376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Martiskainen, H. et al. Decreased plasma beta-amyloid in the Alzheimer’s disease APP A673T variant carriers. Ann. Neurol. 82, 128–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Maloney, J. A. et al. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J. Biol. Chem. 289, 30990–31000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Das, P. et al. Transient pharmacologic lowering of Abeta production prior to deposition results in sustained reduction of amyloid plaque pathology. Mol. Neurodegener. 7, 39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jack, C. R. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sevigny, J. et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Mills, S. M. et al. Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. Rev. Neurol. 169, 737–743 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Reiman, E. M. et al. Alzheimer’s Prevention Initiative: a plan to accelerate the evaluation of presymptomatic treatments. J. Alzheimers Dis. 26, 321–329 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sperling, R. A. et al. The A4 study: stopping AD before symptoms begin? Sci. Transl Med. 6, 228fs213 (2014).

    Article  CAS  Google Scholar 

  66. Tariot, P. N. et al. The generation program: baseline characteristics of cognitively unimpaired APOE4 carriers recruited for Generation study 1 and Generation study 2. Alzheimers Dement. 16, e041139 (2020).

    Article  Google Scholar 

  67. Rouzade-Dominguez, M.-L. et al. The API Generation program: biomarker phenotyping of cognitively unimpaired participants screened in Generation study 1 and Generation study 2. Alzheimers Dement. 16, e041143 (2020).

    Article  Google Scholar 

  68. Karlnoski, R. A. et al. Suppression of amyloid deposition leads to long-term reductions in Alzheimer’s pathologies in Tg2576 mice. J. Neurosci. 29, 4964–4971 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Uhlmann, R. E. et al. Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life. Nat. Neurosci. 23, 1580–1588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mortamais, M. et al. Detecting cognitive changes in preclinical Alzheimer’s disease: a review of its feasibility. Alzheimers Dement. 13, 468–492 (2017).

    Article  PubMed  Google Scholar 

  71. Brown, M. S. & Goldstein, J. L. A tribute to Akira Endo, discoverer of a “penicillin” for cholesterol. Atheroscler. Suppl. 5, 13–16 (2004).

    Article  Google Scholar 

  72. Golde, T. E., Schneider, L. S. & Koo, E. H. Anti-aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron 69, 203–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cummings, J., Lee, G., Ritter, A., Sabbagh, M. & Zhong, K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 5, 272–293 (2019).

    Article  Google Scholar 

  74. Lewcock, J. W. et al. Emerging microglia biology defines novel therapeutic approaches for Alzheimer’s disease. Neuron 108, 801–821 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Panza, F., Lozupone, M., Logroscino, G. & Imbimbo, B. P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 15, 73–88 (2019).

    Article  PubMed  Google Scholar 

  76. Donohue, M. C. et al. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 71, 961–970 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02569398 (2020).

  78. Wang, J. et al. ADCOMS: A composite clinical outcome for prodromal Alzheimer’s disease trials. J. Neurol. Neurosurg. Psychiatry 87, 993–999 (2016).

    Article  PubMed  Google Scholar 

  79. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02956486 (2021).

  80. Mohs, R. C. et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis. Assoc. Disord. 11, S13–S21 (1997).

    Article  PubMed  Google Scholar 

  81. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02245737 (2019).

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02783573 (2019).

  83. McKinzie, D. et al. Nonclinical pharmacological characterization of the BACE1 inhibitor LY3202626. Alzheimers Dement. 12, P432–P433 (2016).

    Article  Google Scholar 

  84. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02791191 (2021).

  85. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03367403 (2021).

  86. Hsiao, C. C., Rombouts, F. & Gijsen, H. J. M. New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg. Med. Chem. Lett. 29, 761–777 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02565511 (2021).

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01739348 (2018).

  89. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01953601 (2019).

  90. Navitsky, M. et al. Standardization of amyloid quantitation with florbetapir standardized uptake value rations to the Centiloid scale. Alzheimers Dement. 14, 1565–1571 (2018).

    Article  PubMed  Google Scholar 

  91. Chávez-Gutiérrez, L. & Szaruga, M. Mechanisms of neurodegeneration - insights from familial Alzheimer’s disease. Semin. Cell Dev. Biol. 105, 75–85 (2020).

    Article  PubMed  CAS  Google Scholar 

  92. Güner, G. & Lichtenthaler, S. F. The substrate repertoire of γ-secretase/presenilin. Semin. Cell Dev. Biol. 105, 27–42 (2020).

    Article  PubMed  CAS  Google Scholar 

  93. Lichtenthaler, S. F., Lemberg, M. K. & Fluhrer, R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J. 37, e99456 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Jorissen, E. et al. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J. Neurosci. 30, 4833–4844 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kuhn, P. H. et al. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29, 3020–3032 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lammich, S. et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl Acad. Sci. USA 96, 3922–3927 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Willem, M. et al. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 526, 443–447 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Z. et al. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat. Commun. 6, 8762 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Saftig, P. & Lichtenthaler, S. P. The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain. Prog. Neurobiol. 135, 1–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Ou-Yang, M. H. et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci. Transl Med. 10, e5620 (2018).

    Article  CAS  Google Scholar 

  101. Cheret, C. et al. Bace1 and neuregulin-1 cooperate to control formation and maintenance of muscle spindles. EMBO J. 32, 2015–2028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fleck, D. et al. Dual cleavage of neuregulin 1 type III by BACE1 and ADAM17 liberates its EGF-like domain and allows paracrine signaling. J. Neurosci. 33, 7856–7869 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Willem, M. et al. Control of peripheral nerve myelination by the beta-secretase BACE1. Science 314, 664–666 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Hu, X. et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9, 1520–1525 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Hu, X., He, W., Luo, X., Tsubota, K. E. & Yan, R. BACE1 regulates hippocampal astrogenesis via the Jagged1-Notch pathway. Cell Rep. 4, 40–49 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu, K. et al. Beta-site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic plasticity via seizure protein 6. Biol. Psychiatry 83, 428–437 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Pigoni, M. et al. Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons. Mol. Neurodegener. 11, 67 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Hitt, B. et al. beta-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J. Biol. Chem. 287, 38408–38425 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Muller, T. et al. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J. 37, e98858 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wang, Y. N. et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc. Natl Acad. Sci. USA 115, 2508–2513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the many thousands of participants and study partners worldwide who have participated in β-site amyloid precursor protein (APP)-cleaving enzyme (BACE) inhibitor clinical trials. Without their altruism and bravery, the understanding of BACE inhibition as a therapeutic strategy for Alzheimer disease would not have progressed nearly so rapidly.

Author information

Authors and Affiliations

Authors

Contributions

E.M., R.V. and S.F.L. researched data for the article, contributed substantially to the discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. I.V. and R.Y. contributed substantially to the discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. E.M.R., R.J.B., B.D.S., C.H., R.S., P.N.T. and C.L.M. contributed substantially to the discussion of the content and reviewed and/or edited the manuscript before submission. M.C.C. and P.A. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Eric McDade, Robert Vassar or Stefan F. Lichtenthaler.

Ethics declarations

Competing interests

There were no sources of funding that directly supported this work. E.M. reports serving on a data safety committee for Eli Lilly and Company, personal honoraria for continuing medical education activities for Eisai and Eli Lilly and Company and UpToDate, and institutional grant support from Eli Lilly and Company, Hoffman-La Roche and Janssen. P.A. has research grants from Eisai, Eli Lilly and Company and Janssen pharmaceuticals, and has received consulting fees from Biogen, Hoffman-La Roche, ImmunoBrain Checkpoint, Merck & Co. and Samus. R.J.B. serves as the principal investigator of the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU), which is supported by the Alzheimer’s Association, the GHR Foundation, an anonymous organization and the DIAN-TU Pharma Consortium (active: Biogen, Eisai, Eli Lilly and Company/Avid Radiopharmaceuticals, Hoffman-La Roche/Genentech, Janssen and United Neuroscience; previously: Abbvie, Amgen, AstraZeneca, Forum, Mithridion, Novartis, Pfizer and Sanofi). The DIAN-TU-001 clinical trial is supported by pharmaceutical partners Eli Lilly and Company, Hoffman-La Roche and Janssen, the Alzheimer’s Association, Avid Radiopharmaceuticals, the GHR Foundation, US National Institutes of Health (NIH) project U01AG042791, NIH project U01AG42791-S1 (Foundation for the National Institutes of Health Accelerating Medicines Partnership), NIH project R01AG046179, NIH project R56AG053267, NIH project R01AG053267, NIH project R01AG053267-S1, NIH project R01AG053267-S2, NIH project U01AG059798 and an anonymous organization. In-kind support has been received from Bracket and CogState for DIAN-TU-001. R.J.B. has received honoraria as a speaker and/or consultant and/or advisory board member from Amgen, AC Immune, Eisai, Hoffman-LaRoche, Janssen and Pfizer and reimbursement of travel expenses from AC Immune, Hoffman-La Roche and Janssen. R.J.B. receives laboratory research funding from the Alzheimer’s Association, the Association for Frontotemporal Degeneration, the BrightFocus Foundation, the Cure Alzheimer’s Fund, Centene Corporation, the NIH, the Rainwater Foundation Tau Consortium, the Tau SILK Consortium (AbbVie, Biogen and Eli Lilly and Company) and an anonymous foundation. R.J.B. is a cofounder of and serves on the scientific advisory board for C2N Diagnostics LLC. Washington University also holds equity in C2N Diagnostics. C2N Diagnostics has licensed certain anti-tau antibodies to AbbVie for therapeutic development. Washington University, R.J.B. and D. Holtzman have equity ownership interest in C2N Diagnostics and receive royalty income based on technology (stable isotope labelling kinetics and blood plasma assay) licensed by Washington University to C2N Diagnostics. R.J.B. receives income from C2N Diagnostics for serving on the scientific advisory board. Washington University, with R.J.B. as a co-inventor, has submitted the US non-provisional patent application “Methods for measuring the metabolism of CNS derived biomolecules in vivo” and the provisional patent application “Plasma based methods for detecting CNS amyloid deposition”. B.D.S. has received research support from Esai and Janssen pharmaceuticals. C.H. reports collaborations with Denali Therapeutics Inc., has participated in one advisory board meeting of Biogen and has received a speaker honorarium from Novartis and Roche. C.H. is the chief adviser to ISAR Bioscience. E.M.R. is one of the leaders of the Alzheimer’s Prevention Initiative, which worked closely with Amgen and Novartis in Alzheimer’s Prevention Initiative Generation Study 1 and Generation Study 2. These trials were funded by Amgen, the US National Institute on Aging, Novartis and philanthropy. E.M.R. is an unpaid scientific adviser to Avid Radiopharmaceuticals, a subsidiary of Eli Lilly and Company. R.S. has research grants from Eli Lilly and Company, Eisai and Janssen pharmaceuticals. P.N.T. has received consulting fees from Acadia, AC Immune, Axsome, BioXcel, Boehringer-Ingelheim, Brain Test Inc., Eisai, eNOVA, the Gerontological Society of America, Otuska & Astex and Syneos, consulting fees and research support from Abbvie, Avanir, Biogen, Cortexyme, Genentech, Eli Lilly and Company, Merck & Co. and Roche and research support from Novartis and has stock ownership in Adamas Pharmaceuticals, which has no past, current or known future involvement in any β-site amyloid precursor protein (APP)-cleaving enzyme (BACE) inhibitor-related therapies or clinical trials. R.V. has stock options in Alector given for his service on the scientific advisory board. R.V.’s advisory relationship with Alector does not involve BACE1 inhibition as a therapeutic strategy. R.V. has consulted for Eisai and Novartis in the past, but is not doing so currently. S.F.L. reports research funding from Novartis and Shionogi. The other authors report no relevant disclosures.

Additional information

Peer review information

Nature Reviews Neurology thanks M. Boada, T. Golde, C. Ritchie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDade, E., Voytyuk, I., Aisen, P. et al. The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat Rev Neurol 17, 703–714 (2021). https://doi.org/10.1038/s41582-021-00545-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00545-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing