Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Psilocybin analog 4-OH-DiPT enhances fear extinction and GABAergic inhibition of principal neurons in the basolateral amygdala

Abstract

Psychedelics such as psilocybin show great promise for the treatment of depression and PTSD, but their long duration of action poses practical limitations for patient access. 4-OH-DiPT is a fast-acting and shorter-lasting derivative of psilocybin. Here we characterized the pharmacological profile of 4-OH-DiPT and examined its impact on fear extinction learning as well as a potential mechanism of action. First, we profiled 4-OH-DiPT at all 12 human 5-HT GPCRs. 4-OH-DiPT showed strongest agonist activity at all three 5-HT2A/2B/2C receptors with near full agonist activity at 5-HT2A. Notably, 4-OH-DiPT had comparable activity at mouse and human 5-HT2A/2B/2C receptors. In a fear extinction paradigm, 4-OH-DiPT significantly reduced freezing responses to conditioned cues in a dose-dependent manner with a greater potency in female mice than male mice. Female mice that received 4-OH-DiPT before extinction training had reduced avoidance behaviors several days later in the light dark box, elevated plus maze and novelty-suppressed feeding test compared to controls, while male mice did not show significant differences. 4-OH-DiPT produced robust increases in spontaneous inhibitory postsynaptic currents (sIPSCs) in basolateral amygdala (BLA) principal neurons and action potential firing in BLA interneurons in a 5-HT2A-dependent manner. RNAscope demonstrates that Htr2a mRNA is expressed predominantly in BLA GABA interneurons, Htr2c mRNA is expressed in both GABA interneurons and principal neurons, while Htr2b mRNA is absent in the BLA. Our findings suggest that 4-OH-DiPT activates BLA interneurons via the 5-HT2A receptor to enhance GABAergic inhibition of BLA principal neurons, which provides a potential mechanism for suppressing learned fear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pharmacological profile of 4-OH-DiPT at the 5-HTome.
Fig. 2: 4-OH-DiPT-paired extinction training reduces conditioned fear expression and decreases avoidance behavior in female mice.
Fig. 3: 4-OH-DiPT enhances spontaneous inhibitory tone on BLA principal neurons.
Fig. 4: 4-OH-DiPT induces AP firing in BLA interneurons via 5-HT2A activation.
Fig. 5: Expression of Htr2a is localized to interneurons in the basolateral amygdala.

Similar content being viewed by others

References

  1. Hoppen TH, Morina N. The prevalence of PTSD and major depression in the global population of adult war survivors: a meta-analytically informed estimate in absolute numbers. Eur J Psychotraumatol. 2019;10:1578637.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, et al. Post-traumatic stress disorder. Nat Rev Dis Prim. 2015;1:15057.

    Article  PubMed  Google Scholar 

  3. Bisson JI, Roberts NP, Andrew M, Cooper R, Lewis C. Psychological therapies for chronic post-traumatic stress disorder (PTSD) in adults. Cochrane Database Syst Rev. 2013;2013:CD003388.

    PubMed  PubMed Central  Google Scholar 

  4. Bisson J, Andrew M. Psychological treatment of post-traumatic stress disorder (PTSD). Cochrane Database Syst Rev. 2007:Cd003388. https://doi.org/10.1002/14651858.CD003388.pub3.

  5. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic Stress Disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52:1048–60.

    Article  CAS  PubMed  Google Scholar 

  6. Bradley R, Greene J, Russ E, Dutra L, Westen D. A Multidimensional Meta-Analysis of Psychotherapy for PTSD. Am J Psychiatry. 2005;162:214–27.

    Article  PubMed  Google Scholar 

  7. van der Kolk BA, Dreyfuss D, Michaels M, Shera D, Berkowitz R, Fisler R, et al. Fluoxetine in posttraumatic stress disorder. J Clin Psychiatry. 1994;55:517–22.

    PubMed  Google Scholar 

  8. Meltzer-Brody S, Connor KM, Churchill E, Davidson JR. Symptom-specific effects of fluoxetine in post-traumatic stress disorder. Int Clin Psychopharmacol. 2000;15:227–31.

    Article  CAS  PubMed  Google Scholar 

  9. Martenyi F, Brown EB, Zhang H, Prakash A, Koke SC. Fluoxetine versus placebo in posttraumatic stress disorder. J Clin Psychiatry. 2002;63:199–206.

    Article  CAS  PubMed  Google Scholar 

  10. Barrett FS, Doss MK, Sepeda ND, Pekar JJ, Griffiths RR. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci Rep. 2020;10:2214.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of Psilocybin versus Escitalopram for Depression. N. Engl J Med. 2021;384:1402–11.

    Article  CAS  PubMed  Google Scholar 

  12. Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder. JAMA Psychiatry. 2021;78:481.

    Article  PubMed  Google Scholar 

  13. Carhart-Harris RL, Bolstridge M, Rucker J, Day CM, Erritzoe D, Kaelen M, et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 2016;3:619–27.

    Article  PubMed  Google Scholar 

  14. Carhart-Harris RL, Bolstridge M, Day CM, Rucker J, Watts R, Erritzoe DE, et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology. 2018;235:399–408.

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell JM, Bogenschutz M, Lilienstein A, Harrison C, Kleiman S, Parker-Guilbert K, et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat Med. 2021;27:1025–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yaden DB, Griffiths RR. The Subjective Effects of Psychedelics Are Necessary for Their Enduring Therapeutic Effects. ACS Pharmacol Transl Sci. 2021;4:568–72.

    Article  CAS  PubMed  Google Scholar 

  17. Nutt D, Erritzoe D, Carhart-Harris R. Psychedelic Psychiatry’s Brave New World. Cell. 2020;181:24–8.

    Article  CAS  PubMed  Google Scholar 

  18. Holze F, Becker AM, Kolaczynska KE, Duthaler U, Liechti ME. Pharmacokinetics and Pharmacodynamics of Oral Psilocybin Administration in Healthy Participants. Clin Pharmacol Therapeutics. 2023;113:822–31.

    Article  CAS  Google Scholar 

  19. Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE. Psychedelics and Other Psychoplastogens for Treating Mental Illness. Front Psychiatry. 2021;12:727117.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alexander Shulgin, Ann Shulgin. TiHKAL: The Continuation Transform Press: Berkeley, California; 1997.

  21. Erowid. 4-HO-DiPT Reports. Jun 23, 2004. https://www.erowid.org/experiences/subs/exp_4HODiPT.shtml.

  22. Klein AK, Chatha M, Laskowski LJ, Anderson EI, Brandt SD, Chapman SJ, et al. Investigation of the structure–activity relationships of psilocybin analogues. ACS Pharmacol Transl Sci. 2020;4:533–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gatch MB, Hoch A, Carbonaro TM. Discriminative Stimulus Effects of Substituted Tryptamines in Rats. ACS Pharm Transl Sci. 2021;4:467–71.

    Article  CAS  Google Scholar 

  24. Halberstadt AL, Geyer MA. Characterization of the head-twitch response induced by hallucinogens in mice: detection of the behavior based on the dynamics of head movement. Psychopharmacol (Berl). 2013;227:727–39.

    Article  CAS  Google Scholar 

  25. Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS, Kristiansen S, et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44:1328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zamberlan F, Sanz C, Martínez Vivot R, Pallavicini C, Erowid F, Erowid E, et al. The Varieties of the Psychedelic Experience: A Preliminary Study of the Association Between the Reported Subjective Effects and the Binding Affinity Profiles of Substituted Phenethylamines and Tryptamines. Front Integr Neurosci. 2018;12:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ballentine G, Friedman SF, Bzdok D. Trips and neurotransmitters: discovering principled patterns across 6850 hallucinogenic experiences. Sci Adv. 2022;8:eabl6989.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wessa M, Flor H. Failure of extinction of fear responses in posttraumatic stress disorder: evidence from second-order conditioning. Am J Psychiatry. 2007;164:1684–92.

    Article  PubMed  Google Scholar 

  29. Norrholm SD, Jovanovic T, Olin IW, Sands LA, Karapanou I, Bradley B, et al. Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiatry. 2011;69:556–63.

    Article  PubMed  Google Scholar 

  30. Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol. 2012;63:129–51.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wolff SBE, Gründemann J, Tovote P, Krabbe S, Jacobson GA, Müller C, et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature. 2014;509:453–58.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Grewe BF, Gründemann J, Kitch LJ, Lecoq JA, Parker JG, Marshall JD, et al. Neural ensemble dynamics underlying a long-term associative memory. Nature. 2017;543:670–75.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A. Switching on and off fear by distinct neuronal circuits. Nature. 2008;454:600–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Morilak DA, Garlow SJ, Ciaranello RD. Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience. 1993;54:701–17.

    Article  CAS  PubMed  Google Scholar 

  35. McDonald AJ, Mascagni F. Neuronal localization of 5-HT type 2A receptor immunoreactivity in the rat basolateral amygdala. Neuroscience. 2007;146:306–20.

    Article  CAS  PubMed  Google Scholar 

  36. Bombardi C. Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with γ-aminobutyric acid. Brain Res. 2011;1370:112–28.

    Article  CAS  PubMed  Google Scholar 

  37. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagnostics: JMD. 2012;14:22–9.

    Article  CAS  PubMed  Google Scholar 

  38. Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, et al. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Rep. 2023;42:112203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S. A Simple Method for Quantifying Functional Selectivity and Agonist Bias. ACS Chem Neurosci. 2012;3:193–203.

    Article  CAS  PubMed  Google Scholar 

  40. Vickstrom CR, Liu X, Liu S, Hu MM, Mu L, Hu Y, et al. Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior. Mol Psychiatry. 2021;26:3178–91.

  41. Liu X, Li Y, Yu L, Vickstrom CR, Liu QS. VTA mTOR signaling regulates dopamine dynamics, cocaine-induced synaptic alterations, and reward. Neuropsychopharmacology. 2018;43:1066–77.

    Article  CAS  PubMed  Google Scholar 

  42. Zhong P, Wang W, Yu F, Nazari M, Liu X, Liu QS. Phosphodiesterase 4 inhibition impairs cocaine-induced inhibitory synaptic plasticity and conditioned place preference. Neuropsychopharmacology. 2012;37:2377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mu L, Liu X, Yu H, Hu M, Friedman V, Kelly TJ, et al. Ibudilast attenuates cocaine self-administration and prime- and cue-induced reinstatement of cocaine seeking in rats. Neuropharmacology. 2021;201:108830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu X, Chen Y, Tong J, Reynolds AM, Proudfoot SC, Qi J, et al. Epac Signaling Is Required for Cocaine-Induced Change in AMPA Receptor Subunit Composition in the Ventral Tegmental Area. J Neurosci. 2016;36:4802–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shukla AK, Xiao K, Lefkowitz RJ. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci. 2011;36:457–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodriguiz RM, Nadkarni V, Means CR, Pogorelov VM, Chiu Y-T, Roth BL, et al. LSD-stimulated behaviors in mice require β-arrestin 2 but not β-arrestin 1. Sci Rep. 2021;11:17690.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp Brain Res. 2013;228:481–91.

    Article  CAS  PubMed  Google Scholar 

  48. Pędzich BD, Rubens S, Sekssaoui M, Pierre A, Van Schuerbeek A, Marin P, et al. Effects of a psychedelic 5-HT2A receptor agonist on anxiety-related behavior and fear processing in mice. Neuropsychopharmacology. 2022;47:1304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  49. De La Fuente Revenga M, Zhu B, Guevara CA, Naler LB, Saunders JM, Zhou Z, et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 2021;37:109836.

    Article  PubMed  Google Scholar 

  50. Hagsäter SM, Pettersson R, Pettersson C, Atanasovski D, Näslund J, Eriksson E. A Complex Impact of Systemically Administered 5-HT2A Receptor Ligands on Conditioned Fear. Int J Neuropsychopharmacol. 2021;24:749–57.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cameron LP, Benson CJ, Dunlap LE, Olson DE. Effects of N, N-Dimethyltryptamine on Rat Behaviors Relevant to Anxiety and Depression. ACS Chem Neurosci. 2018;9:1582–90.

    Article  CAS  PubMed  Google Scholar 

  52. Cameron LP, Benson CJ, DeFelice BC, Fiehn O, Olson DE. Chronic, Intermittent Microdoses of the Psychedelic N,N-Dimethyltryptamine (DMT) Produce Positive Effects on Mood and Anxiety in Rodents. ACS Chem Neurosci. 2019;10:3261–70.

    Article  CAS  PubMed  Google Scholar 

  53. Wiesenfeld-Hallin Z. Sex differences in pain perception. Gend Med. 2005;2:137–45.

    Article  PubMed  Google Scholar 

  54. Mineka S. The role of fear in theories of avoidance learning, flooding, and extinction. Psychol Bull. 1979;86:985–1010.

    Article  Google Scholar 

  55. Solomon RL, Wynne LC. Traumatic avoidance learning: the principles of anxiety conservation and partial irreversibility. Psychol Rev. 1954;61:353–85.

    Article  CAS  PubMed  Google Scholar 

  56. Solomon RL, Kamin LJ, Wynne LC. Traumatic avoidance learning: the outcomes of several extinction procedures with dogs. J Abnorm Psychol. 1953;48:291–302.

    CAS  PubMed  Google Scholar 

  57. Bourin M, Hascoët M. The mouse light/dark box test. Eur J Pharmacol. 2003;463:55–65.

    Article  CAS  PubMed  Google Scholar 

  58. Hogg S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharm Biochem Behav. 1996;54:21–30.

    Article  CAS  Google Scholar 

  59. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharm. 2003;463:3–33.

    Article  CAS  Google Scholar 

  60. Bodnoff SR, Suranyi-Cadotte B, Quirion R, Meaney MJ. A comparison of the effects of diazepam versus several typical and atypical anti-depressant drugs in an animal model of anxiety. Psychopharmacol (Berl). 1989;97:277–9.

    Article  CAS  Google Scholar 

  61. Rex A, Voigt JP, Voits M, Fink H. Pharmacological evaluation of a modified open-field test sensitive to anxiolytic drugs. Pharm Biochem Behav. 1998;59:677–83.

    Article  CAS  Google Scholar 

  62. Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a Stable Neural Correlate of Associative Memory. Science. 2007;317:1230–33.

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Krabbe S, Gründemann J, Lüthi A. Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning. Biol Psychiatry. 2018;83:800–09.

    Article  PubMed  Google Scholar 

  64. Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo L, et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci. 2016;19:1743–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016;26:1327–37.

    Article  CAS  PubMed  Google Scholar 

  66. McKinney M, Raddatz R. Practical Aspects of Radioligand Binding. Curr Protocols Pharmacol. 2006;33:1.31-11.3.16.

  67. Kobayashi H, Picard L-P, Schönegge A-M, Bouvier M. Bioluminescence resonance energy transfer–based imaging of protein–protein interactions in living cells. Nat Protoc. 2019;14:1084–107.

    Article  CAS  PubMed  Google Scholar 

  68. Stork O, Ji FY, Obata K. Reduction of extracellular GABA in the mouse amygdala during and following confrontation with a conditioned fear stimulus. Neurosci Lett. 2002;327:138–42.

    Article  CAS  PubMed  Google Scholar 

  69. Heldt SA, Ressler KJ. Training-induced changes in the expression of GABAA-associated genes in the amygdala after the acquisition and extinction of Pavlovian fear. Eur J Neurosci. 2007;26:3631–44.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pape H-C, Stork O. Genes and Mechanisms in the Amygdala Involved in the Formation of Fear Memory. Ann N. Y Acad Sci. 2006;985:92–105.

    Article  ADS  Google Scholar 

  71. Muller J, Corodimas KP, Fridel Z, LeDoux JE. Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav Neurosci. 1997;111:683–91.

    Article  CAS  PubMed  Google Scholar 

  72. Jiang X, Xing G, Yang C, Verma A, Zhang L, Li H. Stress Impairs 5-HT2A Receptor-Mediated Serotonergic Facilitation of GABA Release in Juvenile Rat Basolateral Amygdala. Neuropsychopharmacology. 2009;34:410–23.

    Article  CAS  PubMed  Google Scholar 

  73. Rainnie DG. Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol. 1999;82:69–85.

    Article  CAS  PubMed  Google Scholar 

  74. Lucas EK, Jegarl AM, Morishita H, Clem RL. Multimodal and site-specific plasticity of amygdala parvalbumin interneurons after fear learning. Neuron. 2016;91:629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rothbaum BO, Schwartz AC. Exposure Therapy for Posttraumatic Stress Disorder. Am J Psychother. 2002;56:59–75.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding

This work was supported by National Institutes of Health Grants R01MH121454, DA047269 and R01DA035217 (to QSL), R35GM133421 (to JDM), and F31DA054759 (to VF). TJK is a member of the Medical Scientist Training Program at MCW, which is partially supported by a training grant from NIGMS T32-GM080202. It was also partially funded through the Research and Education Initiative Fund, a component of the Advancing a Healthier Wisconsin endowment at MCW.

Author information

Authors and Affiliations

Authors

Contributions

TJK, QSL, and JDM designed the experiments. TJK, EB, LM, HY, XJ, YH, WS, and VF performed the experiments. TJK wrote the initial draft. TJK, QSL, JDM, and EB wrote the revised manuscript. VF edited the manuscript. JDM supervised the 5-HT receptor BRET experiments and were conducted by EMB.

Corresponding authors

Correspondence to John D. McCorvy or Qing-song Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, T.J., Bonniwell, E.M., Mu, L. et al. Psilocybin analog 4-OH-DiPT enhances fear extinction and GABAergic inhibition of principal neurons in the basolateral amygdala. Neuropsychopharmacol. 49, 854–863 (2024). https://doi.org/10.1038/s41386-023-01744-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01744-8

Search

Quick links