Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Basolateral amygdala neuropeptide Y system modulates binge ethanol consumption

Subjects

Abstract

Neuropeptide Y (NPY) signaling regulation of corticolimbic communication is known to modulate binge-like ethanol consumption in rodents. In this work we sought to assess the impact of intra-BLA NPY system modulation on binge-like ethanol intake and to assess the role of the NPY1R+ projection from the BLA to the mPFC in this behavior. We used “drinking-in-the-dark” (DID) procedures in C57BL6J mice to address these questions. First, the impact of intra-BLA administration of NPY on binge-like ethanol intake was assessed. Next, the impact of repeated cycles of DID intake on NPY1R expression in the BLA was assessed with use of immunohistochemistry (IHC). Finally, chemogenetic inhibition of BLA→mPFC NPY1R+ projections was assessed to determine if limbic communication with the mPFC was specifically involved in binge-like ethanol intake. Importantly, as both the BLA and NPY system are sexually dimorphic, both sexes were assessed in these studies. Intra-BLA NPY dose-dependently decreased binge-like ethanol intake in males only. Repeated DID reduced NPY1R expression in the BLA of both sexes. Silencing of BLA→mPFC NPY1R+ neurons significantly reduced binge-like ethanol intake in both sexes in a dose-dependent manner. We provide novel evidence that (1) intra-BLA NPY reduces binge-like ethanol intake in males; (2) binge-like ethanol intake reduces NPY1R levels in the BLA; and (3) chemogenetic inhibition of BLA→mPFC NPY1R+ neurons blunts binge-like drinking in male and female mice. These observations provide the first direct evidence that NPY signaling in the BLA, and specifically BLA communication with the mPFC, modulates binge-like ethanol consumption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intra-BLA NPY dose dependently decreases binge-like ethanol intake in male mice.
Fig. 2: Intra-BLA NPY does not impact sucrose intake or general locomotion.
Fig. 3: Three cycles of ethanol DID decreases NPY1R expression in the BLA.
Fig. 4: Chemogenetic inhibition of BLA → mPFC NPY1R+ projections inhibits binge-like ethanol intake in a dose-dependent manner.
Fig. 5: Schematic representation of the neurocircuitry under investigation and hypothetical mechanisms of action.

Similar content being viewed by others

References

  1. National Institute on Alcohol Abuse and Alcoholism. No Title. Alcohol Facts Stat. 2022.

  2. Sprow GM, Thiele TE. The neurobiology of binge-like ethanol drinking: evidence from rodent models. Physiol Behav. 2012;106:325–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koob GF. Addiction is a reward deficit and stress surfeit disorder. Front Psychiatry. 2013;4:72.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gilpin NW. Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence. Neuropeptides. 2012;46:253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robinson SL, Thiele TE. The role of neuropeptide Y (NPY) in alcohol and drug abuse disorders. Int Rev Neurobiol. 2017;136:177–97.

    Article  CAS  PubMed  Google Scholar 

  6. Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y–a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature. 1982;296:659–60.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Adrian TE, Allen JM, Bloom SR, Ghatei MA, Rossor MN, Roberts GW, et al. Neuropeptide Y distribution in human brain. Nat. 1983;306:584–6.

    Article  ADS  CAS  Google Scholar 

  8. Allen YS, Bloom SR, Polak JM. The neuropeptide Y-immunoreactive neuronal system: discovery, anatomy and involvement in neurodegenerative disease. Hum Neurobiol. 1986;5:227–34.

    CAS  PubMed  Google Scholar 

  9. Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, et al. Neuropeptide Y distribution in the rat brain. Science. 1983;221:877–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Caberlotto L, Thorsell A, Rimondini R, Sommer W, Hyytiä P, Heilig M. Differential expression of NPY and its receptors in alcohol-preferring AA and alcohol-avoiding ANA rats. Alcohol Clin Exp Res. 2001;25:1564–9.

    CAS  PubMed  Google Scholar 

  11. Hayes DM, Knapp DJ, Breese GR, Thiele TE. Comparison of basal neuropeptide Y and corticotropin releasing factor levels between the high ethanol drinking C57BL/6J and low ethanol drinking DBA/2J inbred mouse strains. Alcohol Clin Exp Res. 2005;29:721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thiele TE, Marsh DJ, Ste Marie L, Bernstein IL, Palmiter RD. Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature. 1998;396:366–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hwang BH, Suzuki R, Lumeng L, Li TK, McBride WJ. Innate differences in neuropeptide Y (NPY) mRNA expression in discrete brain regions between alcohol-preferring (P) and -nonpreferring (NP) rats: a significantly low level of NPY mRNA in dentate gyrus of the hippocampus and absence of NPY mRNA in the medial habenular nucleus of P rats. Neuropeptides. 2004;38:359–68.

    Article  CAS  PubMed  Google Scholar 

  14. Hwang BH, Zhang JK, Ehlers CL, Lumeng L, Li TK. Innate differences of neuropeptide Y (NPY) in hypothalamic nuclei and central nucleus of the amygdala between selectively bred rats with high and low alcohol preference. Alcohol Clin Exp Res. 1999;23:1023–30.

    Article  CAS  PubMed  Google Scholar 

  15. Thiele TE, Miura GI, Marsh DJ, Bernstein IL, Palmiter RD. Neurobiological responses to ethanol in mutant mice lacking neuropeptide Y or the Y5 receptor. Pharm Biochem Behav. 2000;67:683–91.

    Article  CAS  Google Scholar 

  16. Koob GF. Negative reinforcement in drug addiction: the darkness within. Curr Opin Neurobiol. 2013;23:559–63.

    Article  CAS  PubMed  Google Scholar 

  17. Badia-Elder NE, Gilpin NW, Stewart RB. Neuropeptide Y modulation of ethanol intake: effects of ethanol drinking history and genetic background. Peptides. 2007;28:339–44.

    Article  CAS  PubMed  Google Scholar 

  18. Gilpin NW, Herman MA, Roberto M. The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol Psychiatry. 2015;77:859–69.

    Article  PubMed  Google Scholar 

  19. Robinson SLL, Marrero IMM, Perez-Heydrich CAA, Sepulveda-Orengo MTT, Reissner KJJ, Thiele TEE. Medial prefrontal cortex neuropeptide Y modulates binge-like ethanol consumption in C57BL/6J mice. Neuropsychopharmacology. 2019;44:1132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sparrow AM, Lowery-Gionta EG, Pleil KE, Li C, Sprow GM, Cox BR, et al. Central neuropeptide Y modulates binge-like ethanol drinking in C57BL/6J mice via Y1 and Y2 receptors. Neuropsychopharmacology. 2012;37:1409–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron. 2017;93:1464–1479.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fontanini A, Grossman SE, Figueroa JA, Katz DB. Distinct subtypes of basolateral amygdala taste neurons reflect palatability and reward. J Neurosci. 2009;29:2486–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ulrich-Lai YM, Christiansen AM, Ostrander MM, Jones AA, Jones KR, Choi DC, et al. Pleasurable behaviors reduce stress via brain reward pathways. Proc Natl Acad Sci USA. 2010;107:20529–34.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolff SBE, Gründemann J, Tovote P, Krabbe S, Jacobson GA, Müller C, et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature. 2014;509:453–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517:284–92.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471:358–62.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, et al. A circuit mechanism for differentiating positive and negative associations. Nature. 2015;520:675–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beyeler A, Chang CJ, Silvestre M, Lévêque C, Namburi P, Wildes CP, et al. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Rep. 2018;22:905–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee S, Kim SJ, Kwon OB, Lee JH, Kim JH. Inhibitory networks of the amygdala for emotional memory. Front Neural Circuits. 2013;0:129.

    Google Scholar 

  30. Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry. Exp Mol Med. 2018;50:1–16.

    Article  CAS  PubMed  Google Scholar 

  31. Bowers ME, Choi DC, Ressler KJ. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y. Physiol Behav. 2012;107:699–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kornhuber J, Zoicas I. Brain region-dependent effects of neuropeptide Y on conditioned social fear and anxiety-like behavior in male mice. Int J Mol Sci. 2021;22:3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gutman AR, Yang Y, Ressler KJ, Davis M. The role of neuropeptide Y in the expression and extinction of fear-potentiated startle. J Neurosci. 2008;28:12682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sajdyk TJ, Johnson PL, Leitermann RJ, Fitz SD, Dietrich A, Morin M, et al. Neuropeptide Y in the amygdala induces long-term resilience to stress-induced reductions in social responses but not hypothalamic–adrenal–pituitary axis activity or hyperthermia. J Neurosci. 2008;28:893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leitermann RJ, Rostkowski AB, Urban JH. Neuropeptide Y input to the rat basolateral amygdala complex and modulation by conditioned fear HHS public access. J Comp Neurol. 2016;524:2418–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karlsson RM, Choe JS, Cameron HA, Thorsell A, Crawley JN, Holmes A, et al. The neuropeptide Y Y1 receptor subtype is necessary for the anxiolytic-like effects of neuropeptide Y, but not the antidepressant-like effects of fluoxetine, in mice. Psychopharmacol (Berl). 2008;195:547–57.

    Article  CAS  Google Scholar 

  37. Morales-Medina JC, Dumont Y, Benoit CE, Bastianetto S, Flores G, Fournier A, et al. Role of neuropeptide Y Y1 and Y2 receptors on behavioral despair in a rat model of depression with co-morbid anxiety. Neuropharmacology. 2012;62:200–8.

    Article  CAS  PubMed  Google Scholar 

  38. Sajdyk TJ, Vandergriff MG, Gehlert DR. Amygdalar neuropeptide Y Y1 receptors mediate the anxiolytic-like actions of neuropeptide Y in the social interaction test. Eur J Pharm. 1999;368:143–7.

    Article  CAS  Google Scholar 

  39. Rostkowski AB, Teppen TL, Peterson DA, Urban JH. Cell-specific expression of neuropeptide Y Y1 receptor immunoreactivity in the rat basolateral amygdala. J Comp Neurol. 2009;517:166–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McGinty VB, Grace AA. Activity-dependent depression of medial prefrontal cortex inputs to accumbens neurons by the basolateral amygdala. Neuroscience. 2009;162:1429–36.

    Article  CAS  PubMed  Google Scholar 

  41. Little JP, Carter AG. Synaptic mechanisms underlying strong reciprocal connectivity between the medial prefrontal cortex and basolateral amygdala. J Neurosci. 2013;33:15333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dilgen J, Tejeda HA, O’Donnell P. Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. J Neurophysiol. 2013;110:221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheriyan J, Kaushik MK, Ferreira AN, Sheets PL. Specific targeting of the basolateral amygdala to projectionally defined pyramidal neurons in prelimbic and infralimbic cortex. ENeuro. 2016;3:489–94.

    Article  Google Scholar 

  44. Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience. 2015. https://doi.org/10.1016/j.neuroscience.2015.07.041.

  45. Nahvi RJ, Sabban EL. Sex differences in the neuropeptide Y system and implications for stress related disorders. Biomolecules. 2020;10:1–21.

    Article  Google Scholar 

  46. Price ME, McCool BA. Structural, functional, and behavioral significance of sex and gonadal hormones in the basolateral amygdala: a review of preclinical literature. Alcohol. 2022;98:25–41.

    Article  CAS  PubMed  Google Scholar 

  47. Padilla SL, Qiu J, Soden ME, Sanz E, Nestor CC, Barker FD, et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat Neurosci. 2016;19:734–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cox BR, Olney JJ, Lowery-Gionta EG, Sprow GM, Rinker JA, Navarro M, et al. Repeated cycles of binge-like ethanol (EtOH)-drinking in male C57BL/6J mice augments subsequent voluntary EtOH intake but not other dependence-like phenotypes. Alcohol Clin Exp Res. 2013;37:1688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  50. Killgore WDS, Britton JC, Schwab ZJ, Price LM, Weiner MR, Gold AL, et al. Cortico-limbic responses to masked affective faces across ptsd, panic disorder, and specific phobia. Depress Anxiety. 2014;31:150–9.

    Article  PubMed  Google Scholar 

  51. Alexandra Kredlow M, Fenster RJ, Laurent ES, Ressler KJ, Phelps EA. Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology. 2022;47:247–59.

    Article  CAS  PubMed  Google Scholar 

  52. Sun T, Song Z, Tian Y, Tian W, Zhu C, Ji G, et al. Basolateral amygdala input to the medial prefrontal cortex controls obsessive-compulsive disorder-like checking behavior. Proc Natl Acad Sci USA. 2019;116:3799–804.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chefer VI, Wang R, Shippenberg TS. Basolateral amygdala-driven augmentation of medial prefrontal cortex GABAergic neurotransmission in response to environmental stimuli associated with cocaine administration. Neuropsychopharmacology. 2011;36:2018–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang L, Chen Y, Jin S, Lin L, Duan S, Si K, et al. Organizational principles of amygdalar input-output neuronal circuits. Mol Psychiatry. 2021;26:7118–29.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Manoorcheri K, Carter AG. Rostral and caudal basolateral amygdala engage distinct circuits in the prelimbic and infralimbic prefrontal cortex. Elife. 2022;11:e82688.

  56. Truitt WA, Johnson PL, Dietrich AD, Fitz SD, Shekhar A. Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala. Neuroscience. 2009;160:284–94.

    Article  CAS  PubMed  Google Scholar 

  57. McDonald AJ, Zaric V. Extrinsic origins of the somatostatin and neuropeptide Y innervation of the rat basolateral amygdala. Neuroscience. 2015. https://doi.org/10.1016/j.neuroscience.2015.03.004.

  58. Blume SR, Freedberg M, Vantrease JE, Chan R, Padival M, Record MJ, et al. Sex- and estrus-dependent differences in rat basolateral amygdala. J Neurosci. 2017;37:10567–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bowman RE, Micik R, Gautreaux C, Fernandez L, Luine VN. Sex-dependent changes in anxiety, memory, and monoamines following one week of stress. Physiol Behav. 2009;97:21–29.

    Article  CAS  PubMed  Google Scholar 

  60. Mitra R, Vyas A, Chatterjee G, Chattarji S. Chronic-stress induced modulation of different states of anxiety-like behavior in female rats. Neurosci Lett. 2005;383:278–83.

    Article  CAS  PubMed  Google Scholar 

  61. Mitsushima D, Yamada K, Takase K, Funabashi T, Kimura F. Sex differences in the basolateral amygdala: the extracellular levels of serotonin and dopamine, and their responses to restraint stress in rats. Eur J Neurosci. 2006;24:3245–54.

    Article  PubMed  Google Scholar 

  62. Maren S, De Oca B, Fanselow MS. Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res. 1994;661:25–34.

    Article  CAS  PubMed  Google Scholar 

  63. Wood GE, Shors TJ. Stress facilitates classical conditioning in males, but impairs classical conditioning in females through activational effects of ovarian hormones. Proc Natl Acad Sci USA. 1998;95:4066–71.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guily P, Lassalle O, Chavis P, Manzoni OJ. Sex-specific divergent maturational trajectories in the postnatal rat basolateral amygdala. IScience. 2022;25:103815.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Blume SR, Padival M, Urban JH, Rosenkranz JA. Disruptive effects of repeated stress on basolateral amygdala neurons and fear behavior across the estrous cycle in rats. Sci Rep. 2019;9:12292.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Gupta K, Chattarji S. Sex differences in the delayed impact of acute stress on the amygdala. Neurobiol Stress. 2021;14:100292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McEwen BS, Alves SE. Estrogen actions in the central nervous system. Endocr Rev. 1999;20:279–307.

    CAS  PubMed  Google Scholar 

  68. Blurton-Jones M, Tuszynski MH. Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats. J Comp Neurol. 2002;452:276–87.

    Article  PubMed  Google Scholar 

  69. Kiss J, Csaba Z, Csáki Á, Halász B. Demonstration of estrogen receptor α protein in glutamatergic (vesicular glutamate transporter 2 immunoreactive) neurons of the female rat hypothalamus and amygdala using double-label immunocytochemistry. Exp Brain Res. 2013;226:595–602.

    Article  CAS  PubMed  Google Scholar 

  70. Morales M, McGinnis MMM, Robinson SLL, Chappell AMM, McCool BAA. Chronic intermittent ethanol exposure modulation of glutamatergic neurotransmission in rat lateral/basolateral amygdala is duration-, input-, and sex-dependent. Neuroscience. 2018;371:277–87.

    Article  CAS  PubMed  Google Scholar 

  71. Price ME, McCool BA. Chronic alcohol dysregulates glutamatergic function in the basolateral amygdala in a projection-and sex-specific manner. Front Cell Neurosci. 2022;16:857550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alele PE, Devaud LL. Sex differences in steroid modulation of ethanol withdrawal in male and female rats. J Pharm Exp Ther. 2007;320:427–36.

    Article  CAS  Google Scholar 

  73. Devaud LL, Chadda R. Sex differences in rats in the development of and recovery from ethanol dependence assessed by changes in seizure susceptibility. Alcohol Clin Exp Res. 2001;25:1689–96.

    Article  CAS  PubMed  Google Scholar 

  74. Overstreet DH, Knapp DJ, Breese GR. Similar anxiety-like responses in male and female rats exposed to repeated withdrawals from ethanol. Pharm Biochem Behav. 2004;78:459–64.

    Article  CAS  Google Scholar 

  75. Painsipp E, Herzog H, Sperk G, Holzer P. Sex-dependent control of murine emotional-affective behaviour in health and colitis by peptide YY and neuropeptide Y. Br J Pharm. 2011;163:1302–14.

    Article  CAS  Google Scholar 

  76. Karl T, Duffy L, Herzog H. Behavioural profile of a new mouse model for NPY deficiency. Eur J Neurosci. 2008;28:173–80.

    Article  PubMed  Google Scholar 

  77. Michel MC, Leweljohann K, Farke W, Bischoff A, Feth F, Rascher W. Regulation of NPY/NPY Y1 receptor/G protein system in rat brain cortex. Am J Physiol. 1995;268:R192–200.

    CAS  PubMed  Google Scholar 

  78. Martini M, Sica M, Gotti S, Eva C, Panzica GC. Effects of estrous cycle and sex on the expression of neuropeptide y Y1 receptor in discrete hypothalamic and limbic nuclei of transgenic mice. Peptides. 2011;32:1330–4.

    Article  CAS  PubMed  Google Scholar 

  79. Molosh AI, Sajdyk TJ, Truitt WA, Zhu W, Oxford GS, Shekhar ANPY. y 1 receptors differentially modulate gaba a and nmda receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology. 2013;38:1352–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nahvi RJ, Tanelian A, Nwokafor C, Hollander CM, Peacock L, Sabban EL. Intranasal neuropeptide Y as a potential therapeutic for depressive behavior in the rodent single prolonged stress model in females. Front Behav Neurosci. 2021;15:705579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thiele TE, Koh MT, Pedrazzini T. Voluntary alcohol consumption is controlled via the neuropeptide Y Y1 receptor. J Neurosci. 2002;22:RC208.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Levine OB, Skelly MJ, Miller JD, Rivera-Irizarry JK, Rowson SA, DiBerto JF, et al. The paraventricular thalamus provides a polysynaptic brake on limbic CRF neurons to sex-dependently blunt binge alcohol drinking and avoidance behavior in mice. Nat Commun. 2021;12:5080.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pati S, Salvi SS, Kallianpur M, Vaidya B, Banerjee A, Maiti S, et al. Chemogenetic activation of excitatory neurons alters hippocampal neurotransmission in a dose-dependent manner. 2019. https://doi.org/10.1523/ENEURO.0124-19.2019.

  84. Dornellas APS, Burnham NW, Luhn KL, Petruzzi MV, Thiele TE, Navarro M. Activation of locus coeruleus to rostromedial tegmental nucleus (RMTg) noradrenergic pathway blunts binge-like ethanol drinking and induces aversive responses in mice. Neuropharmacology. 2021;199:108797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burnham NW, Chaimowitz CN, Vis CC, Segantine Dornellas AP, Navarro M, Thiele TE. Lateral hypothalamus-projecting noradrenergic locus coeruleus pathway modulates binge-like ethanol drinking in male and female TH-ires-cre mice. Neuropharmacology. 2021;196:108702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Serova LI, Tillinger A, Alaluf LG, Laukova M, Keegan K, Sabban EL. Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience. 2013;236:298–312.

    Article  CAS  PubMed  Google Scholar 

  87. Sabban EL, Serova L, Nahvi RJ, Liu X. Potential benefits of intranasal neuropeptide Y include sustained extinction of fear memory. J Neuroendocrinol. 2023;e13279.

Download references

Acknowledgements

Special thanks to Rhiannon Thomas, MS, for technical assistance and feedback.

Funding

This work was supported by NIH grants AA022048, AA013573, AA025809, F32AA025811, and K99AA028268.

Author information

Authors and Affiliations

Authors

Contributions

SLR: conception and design of the work; acquisition, analysis, and interpretation of data; and drafting and revising of manuscript. SCB: design of work; acquisition of data; manuscript review. EMY: acquisition of data. TET: conception and design of the work; revising of manuscript; final approval of the version to be published.

Corresponding author

Correspondence to Todd E. Thiele.

Ethics declarations

Competing interests

The authors declare no competing financial interests. Dr. Thiele owns shares of Glauser Life Sciences, a company focusing on the development of therapeutics for mental health disorders. The work that is presented in this paper is not directly related to the scientific aims of Glauser Life Sciences.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, S.L., Bendrath, S.C., Yates, E.M. et al. Basolateral amygdala neuropeptide Y system modulates binge ethanol consumption. Neuropsychopharmacol. 49, 690–698 (2024). https://doi.org/10.1038/s41386-023-01742-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01742-w

Search

Quick links