Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antidepressants enter cells, organelles, and membranes

Abstract

We begin by summarizing several examples of antidepressants whose therapeutic actions begin when they encounter their targets in the cytoplasm or in the lumen of an organelle. These actions contrast with the prevailing view that most neuropharmacological actions begin when drugs engage their therapeutic targets at extracellular binding sites of plasma membrane targets—ion channels, receptors, and transporters. We review the chemical, pharmacokinetic, and pharmacodynamic principles underlying the movements of drugs into subcellular compartments. We note the relationship between protonation-deprotonation events and membrane permeation of antidepressant drugs. The key properties relate to charge and hydrophobicity/lipid solubility, summarized by the parameters LogP, pKa, and LogDpH7.4. The classical metric, volume of distribution (Vd), is unusually large for some antidepressants and has both supracellular and subcellular components. A table gathers structures, LogP, PKa, LogDpH7.4, and Vd data and/or calculations for most antidepressants and antidepressant candidates. The subcellular components, which can now be measured in some cases, are dominated by membrane binding and by trapping in the lumen of acidic organelles. For common antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin/norepinephrine reuptake inhibitors (SNRIs), the target is assumed to be the eponymous reuptake transporter(s), although in fact the compartment of target engagement is unknown. We review special aspects of the pharmacokinetics of ketamine, ketamine metabolites, and other rapidly acting antidepressants (RAADs) including methoxetamine and scopolamine, psychedelics, and neurosteroids. Therefore, the reader can assess properties that markedly affect a drug’s ability to enter or cross membranes—and therefore, to interact with target sites that face the cytoplasm, the lumen of organelles, or a membrane. In the current literature, mechanisms involving intracellular targets are termed “location-biased actions” or “inside-out pharmacology”. Hopefully, these general terms will eventually acquire additional mechanistic details.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A cellular-level “inside-out” view of antidepressant actions.
Fig. 2: The concept of LogP and LogDpH.
Fig. 3: Weak bases accumulate in acidic vesicles.

Similar content being viewed by others

References

  1. Levitt P, Pintar JE, Breakefield XO. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA. 1982;79:6385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Westlund KN, Krakower TJ, Kwan SW, Abell CW. Intracellular distribution of monoamine oxidase A in selected regions of rat and monkey brain and spinal cord. Brain Res. 1993;612:221–30.

    Article  CAS  PubMed  Google Scholar 

  3. Greenawalt JW, Schnaitman C. An appraisal of the use of monoamine oxidase as an enzyme marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1970;46:173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cade JF. Lithium salts in the treatment of psychotic excitement. Med J Aust. 1949;2:349–52.

    Article  CAS  PubMed  Google Scholar 

  5. Jakobsson E, Argüello-Miranda O, Chiu SW, Fazal Z, Kruczek J, Nunez-Corrales S, et al. Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J Membr Biol. 2017;250:587–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science. 2023;379:700–06.

    Article  CAS  PubMed  Google Scholar 

  7. Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. 2023;26:1032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, et al. Psychedelics reopen the social reward learning critical period. Nature. 2023;618:790–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun N, Qin YJ, Xu C, Xia T, Du ZW, Zheng LP, et al. Design of fast-onset antidepressant by dissociating SERT from nNOS in the DRN. Science. 2022;378:390–98.

    Article  CAS  PubMed  Google Scholar 

  10. Henderson BJ, Lester HA. Inside-out neuropharmacology of nicotinic drugs. Neuropharmacology. 2015;96:178–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stoeber M, Jullie D, Lobingier BT, Laeremans T, Steyaert J, Schiller PW, et al. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron. 2018;98:963–76.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, et al. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharm Rev. 2013;65:223–54.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lester HA, Miwa JM, Srinivasan R. Psychiatric drugs bind to classical targets within early exocytotic pathways: therapeutic effects. Biol Psychiatry. 2012;72:905–15.

    Article  Google Scholar 

  14. Shivange AV, Borden PM, Muthusamy AK, Nichols AL, Bera K, Bao H, et al. Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. J Gen Physiol. 2019;151:738–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maguire JL, Mennerick S. Neurosteroids: mechanistic considerations and clinical prospects. Neuropsychopharmacology. 2023. https://doi.org/10.1038/s41386-023-01626-z. Epub ahead of print.

  16. McLaughlin S, Eisenberg M. Antibiotics and membrane biology. Annu Rev Biophys Bioeng. 1975;4:335–66.

    Article  CAS  PubMed  Google Scholar 

  17. Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature. 2005;433:377–81.

    Article  CAS  PubMed  Google Scholar 

  18. Wimley WC, Creamer TP, White SH. Solvation energies of amino acid side chains and backbone in a family of host−guest pentapeptides. Biochemistry. 1996;35:5109–24.

    Article  CAS  PubMed  Google Scholar 

  19. Mannhold R, Poda GI, Ostermann C, Tetko IV. Calculation of molecular lipophilicity: state-of-the-art and comparison of LogP methods on more than 96,000 compounds. J Pharm Sci. 2009;98:861–93.

    Article  CAS  PubMed  Google Scholar 

  20. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci. 1989;29:163–72.

    Article  CAS  Google Scholar 

  21. Chemaxon. logP Plugin. 2023. https://docs.chemaxon.com/display/docs/logp-plugin.md#calculation-method.

  22. Bradley RD, Semple SJ. A comparison of certain acidbase characteristics of arterial blood, jugular venous blood and cerebrospinal fluid in man, and the effect on them of some acute and chronic acid-base disturbances. J Physiol. 1962;160:381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, et al. Pharmacological profile of the α4β2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology. 2007;52:985–94.

  24. Nichols AL, Blumenfeld Z, Fan C, Luebbert L, Blom AEM, Cohen BN, et al. Fluorescence activation mechanism and imaging of drug permeation with new sensors for smoking-cessation ligands. eLife. 2022;11:e74648.

  25. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

    Article  CAS  Google Scholar 

  26. Bhal SK, Kassam K, Peirson IG, Pearl GM. The rule of five revisited: applying log D in place of log P in drug-likeness filters. Mol Pharm. 2007;4:556–60.

    Article  CAS  PubMed  Google Scholar 

  27. Smith D, Allerton C, Kalgutkar A, van de Waterbeemd H. Walker D. Pharmacokinetics and Metabolism in Drug Design. 3rd ed. Weinheim: Wiley; 2012.

    Book  Google Scholar 

  28. Mansoor AMN StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK545280/2022.

  29. Watson PE, Watson ID, Batt RD. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr. 1980;33:27–39.

    Article  CAS  PubMed  Google Scholar 

  30. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94:1259–76.

    Article  CAS  PubMed  Google Scholar 

  31. Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet. 1996;31:257–74.

    Article  CAS  PubMed  Google Scholar 

  32. Shen Q, Wang L, Zhou H, Jiang HD, Yu LS, Zeng S. Stereoselective binding of chiral drugs to plasma proteins. Acta Pharm Sin. 2013;34:998–1006.

    Article  CAS  Google Scholar 

  33. Chuang VT, Otagiri M. Stereoselective binding of human serum albumin. Chirality. 2006;18:159–66.

    Article  CAS  PubMed  Google Scholar 

  34. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev. 1966;41:445–502.

    Article  CAS  PubMed  Google Scholar 

  35. de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharm. 1974;23:2495–531.

    Article  PubMed  Google Scholar 

  36. Mateus A, Matsson P, Artursson P. Rapid measurement of intracellular unbound drug concentrations. Mol Pharm. 2013;10:2467–78.

    Article  CAS  PubMed  Google Scholar 

  37. Mateus A, Matsson P, Artursson P. A high-throughput cell-based method to predict the unbound drug fraction in the brain. J Med Chem. 2014;57:3005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mateus A, Treyer A, Wegler C, Karlgren M, Matsson P, Artursson P. Intracellular drug bioavailability: a new predictor of system dependent drug disposition. Sci Rep. 2017;7:43047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Treyer A, Mateus A, Wisniewski JR, Boriss H, Matsson P, Artursson P. Intracellular drug bioavailability: effect of neutral lipids and phospholipids. Mol Pharm. 2018;15:2224–33.

    Article  CAS  PubMed  Google Scholar 

  40. Treyer A, Walday S, Boriss H, Matsson P, Artursson P. A cell-free approach based on phospholipid characterization for determination of the cell specific unbound drug fraction (fu,cell). Pharm Res. 2019;36:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bera K, Kamajaya A, Shivange AV, Muthusamy AK, Nichols AL, Borden PM, et al. Biosensors show the pharmacokinetics of S-ketamine in the endoplasmic reticulum. Front Cell Neurosci. 2019;13:499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muthusamy AK, Kim CH, Virgil SC, Knox HJ, Marvin JS, Nichols AL, et al. Three mutations convert the selectivity of a protein sensor from nicotinic agonists to S-methadone for use in cells, organelles, and biofluids. J Am Chem Soc. 2022;144:8480–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beatty ZG, Muthusamy AK, Unger EK, Dougherty DA, Tian L, Looger LL, et al. Fluorescence screens for identifying central nervous system-acting drug-biosensor pairs for subcellular and supracellular pharmacokinetics. Bio Protoc. 2022;12:e4551.

  44. Kapoor R, Peyear TA, Koeppe RE 2nd, Andersen OS. Antidepressants are modifiers of lipid bilayer properties. J Gen Physiol. 2019;151:342–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yesylevskyy S, Rivel T, Ramseyer C. Curvature increases permeability of the plasma membrane for ions, water and the anti-cancer drugs cisplatin and gemcitabine. Sci Rep. 2019;9:17214.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun. 2022;13:1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alves AC, Magarkar A, Horta M, Lima J, Bunker A, Nunes C, et al. Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Sci Rep. 2017;7:6343.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wray NH, Schappi JM, Singh H, Senese NB, Rasenick MM. NMDAR-independent, cAMP-dependent antidepressant actions of ketamine. Mol Psychiatry. 2019;24:1833–43.

    Article  CAS  PubMed  Google Scholar 

  49. Sassone-Corsi P. The cyclic AMP pathway. Cold Spring Harb Perspect Biol. 2012;4:a011148.

  50. Donati RJ, Dwivedi Y, Roberts RC, Conley RR, Pandey GN, Rasenick MM. Postmortem brain tissue of depressed suicides reveals increased Gs alpha localization in lipid raft domains where it is less likely to activate adenylyl cyclase. J Neurosci. 2008;28:3042–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Allen JA, Yu JZ, Dave RH, Bhatnagar A, Roth BL, Rasenick MM. Caveolin-1 and lipid microdomains regulate Gs trafficking and attenuate Gs cyclase signaling. Mol Pharmacol. 2009;76:1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Toki S, Donati RJ, Rasenick MM. Treatment of C6 glioma cells and rats with antidepressant drugs increases the detergent extraction of Gsα from plasma membrane. J Neurochem. 1999;73:1114–20.

    Article  CAS  PubMed  Google Scholar 

  53. Czysz AH, Schappi JM, Rasenick MM. Lateral diffusion of Gαs in the plasma membrane is decreased after chronic but not acute antidepressant treatment: role of lipid raft and non-raft membrane microdomains. Neuropsychopharmacology. 2015;40:766–73.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang L, Rasenick MM. Chronic treatment with escitalopram but not R-citalopram translocates Galpha(s) from lipid raft domains and potentiates adenylyl cyclase: a 5-hydroxytryptamine transporter-independent action of this antidepressant compound. J Pharm Exp Ther. 2010;332:977–84.

    Article  CAS  Google Scholar 

  55. Erb SJ, Schappi JM, Rasenick MM. Antidepressants accumulate in lipid rafts independent of monoamine transporters to modulate redistribution of the G protein, Gαs. J Biol Chem. 2016;291:19725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nichols AL, Blumenfeld Z, Luebbert L, Knox HJ, Muthusamy AK, Marvin JS, et al. Selective serotonin reuptake inhibitors within cells: temporal resolution in cytoplasm, endoplasmic reticulum, and membrane. J Neurosci. 2023;43:2222–41.

  57. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021;184:1299–313.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977;69:497–515.

    Article  CAS  PubMed  Google Scholar 

  59. Smith DA, Rowland M. Intracellular and intraorgan concentrations of small molecule drugs: theory, uncertainties in infectious diseases and oncology, and promise. Drug Metab Dispos. 2019;47:665–72.

    Article  CAS  PubMed  Google Scholar 

  60. Hille B. The pH-dependent rate of action of local anesthetics on the node of Ranvier. J Gen Physiol. 1977;69:475–96.

    Article  CAS  PubMed  Google Scholar 

  61. Tischbirek CH, Wenzel EM, Zheng F, Huth T, Amato D, Trapp S, et al. Use-dependent inhibition of synaptic transmission by the secretion of intravesicularly accumulated antipsychotic drugs. Neuron. 2012;74:830–44.

    Article  CAS  PubMed  Google Scholar 

  62. Hay T, Jones R, Beaumont K, Kemp M. Modulation of the partition coefficient between octanol and buffer at pH 7.4 and pKa to achieve the optimum balance of blood clearance and volume of distribution for a series of tetrahydropyran histamine type 3 receptor antagonists. Drug Metab Dispos. 2009;37:1864–70.

    Article  CAS  PubMed  Google Scholar 

  63. Lu S, Sung T, Lin N, Abraham RT, Jessen BA. Lysosomal adaptation: how cells respond to lysosomotropic compounds. PLoS ONE. 2017;12:e0173771.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fu D, Zhou J, Zhu WS, Manley PW, Wang YK, Hood T, et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem. 2014;6:614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lenz B, Brink A, Mihatsch MJ, Altmann B, Niederhauser U, Steinhuber B, et al. Multiorgan crystal deposition of an amphoteric drug in rats due to lysosomal accumulation and conversion to a poorly soluble hydrochloride salt. Toxicol Sci. 2021;180:383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lester HA, Xiao C, Srinivasan R, Son C, Miwa J, Pantoja R, et al. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. implications for drug discovery. AAPS J. 2009;11:167–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Govind AP, Vallejo YF, Stolz JR, Yan JZ, Swanson GT, Green WN. Selective and regulated trapping of nicotinic receptor weak base ligands and relevance to smoking cessation. eLife. 2017;6:e25651.

  68. Tucker KR, Block ER, Levitan ES. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles. Proc Natl Acad Sci USA. 2015;112:E4485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Duvvuri M, Gong Y, Chatterji D, Krise JP. Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60. J Biol Chem. 2004;279:32367–72.

    Article  CAS  PubMed  Google Scholar 

  70. Trapp S, Rosania GR, Horobin RW, Kornhuber J. Quantitative modeling of selective lysosomal targeting for drug design. Eur Biophys J. 2008;37:1317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abdel-Razaq W, Kendall DA, Bates TE. The effects of antidepressants on mitochondrial function in a model cell system and isolated mitochondria. Neurochem Res. 2011;36:327–38.

    Article  CAS  PubMed  Google Scholar 

  72. de Oliveira MR. Fluoxetine and the mitochondria: a review of the toxicological aspects. Toxicol Lett. 2016;258:185–91.

    Article  PubMed  Google Scholar 

  73. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004;22:1567–72.

    Article  CAS  PubMed  Google Scholar 

  74. Koveal D, Rosen PC, Meyer DJ, Diaz-Garcia CM, Wang Y, Cai LH, et al. A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors. Nat Commun. 2022;13:2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science. 2018;360:eaat4422.

  76. Jing M, Zhang P, Wang G, Feng J, Mesik L, Zeng J, et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol. 2018;36:726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Runge K, Cardoso C, de Chevigny A. Dendritic spine plasticity: function and mechanisms. Front Synaptic Neurosci. 2020;12:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ren Z, Pribiag H, Jefferson SJ, Shorey M, Fuchs T, Stellwagen D, et al. Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment. Biol Psychiatry. 2016;80:457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:eaat8078.

  80. Ly C, Greb AC, Vargas MV, Duim WC, Grodzki ACG, Lein PJ, et al. Transient stimulation with psychoplastogens is sufficient to initiate neuronal growth. ACS Pharm Transl Sci. 2021;4:452–60.

    Article  CAS  Google Scholar 

  81. Reinés A, Cereseto M, Ferrero A, Sifonios L, Podestá MF, Wikinski S. Maintenance treatment with fluoxetine is necessary to sustain normal levels of synaptic markers in an experimental model of depression: correlation with behavioral response. Neuropsychopharmacology. 2008;33:1896–908.

    Article  PubMed  Google Scholar 

  82. Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2021;589:474–79.

    Article  CAS  PubMed  Google Scholar 

  83. Park D, Wu Y, Wang X, Gowrishankar S, Baublis A, De, et al. Synaptic vesicle proteins and ATG9A self-organize in distinct vesicle phases within synapsin condensates. Nat Commun. 2023;14:455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen X, Jia B, Zhu S, Zhang M. Phase separation-mediated actin bundling by the postsynaptic density condensates. eLife. 2023;12:e84446.

  85. Xing G, Jing H, Yu Z, Chen P, Wang H, Xiong WC, et al. Membraneless condensates by Rapsn phase separation as a platform for neuromuscular junction formation. Neuron. 2021;109:1963–78.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jain A, Vale RD. RNA phase transitions in repeat expansion disorders. Nature. 2017;546:243–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alberti S, Dormann D. Liquid-liquid phase separation in disease. Annu Rev Genet. 2019;53:171–94.

    Article  CAS  PubMed  Google Scholar 

  88. Pezzotti S, König B, Ramos S, Schwaab G, Havenith M. Liquid-liquid phase separation? ask the water! J Phys Chem Lett. 2023;14:1556–63.

    Article  CAS  PubMed  Google Scholar 

  89. Chong C, Schug SA, Page-Sharp M, Jenkins B, Ilett KF. Development of a sublingual/oral formulation of ketamine for use in neuropathic pain: preliminary findings from a three-way randomized, crossover study. Clin Drug Investig. 2009;29:317–24.

    Article  CAS  PubMed  Google Scholar 

  90. Kharasch ED, Labroo R. Metabolism of ketamine stereoisomers by human liver microsomes. Anesthesiology. 1992;77:1201–7.

    Article  CAS  PubMed  Google Scholar 

  91. Yanagihara Y, Kariya S, Ohtani M, Uchino K, Aoyama T, Yamamura Y, et al. Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2001;29:887–90.

    CAS  PubMed  Google Scholar 

  92. Hijazi Y, Boulieu R. Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2002;30:853–8.

    Article  CAS  PubMed  Google Scholar 

  93. Yanagihara Y, Ohtani M, Kariya S, Uchino K, Hiraishi T, Ashizawa N, et al. Plasma concentration profiles of ketamine and norketamine after administration of various ketamine preparations to healthy Japanese volunteers. Biopharm Drug Dispos. 2003;24:37–43.

    Article  CAS  PubMed  Google Scholar 

  94. Desta Z, Moaddel R, Ogburn ET, Xu C, Ramamoorthy A, Venkata SL, et al. Stereoselective and regiospecific hydroxylation of ketamine and norketamine. Xenobiotica. 2012;42:1076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao X, Venkata SL, Moaddel R, Luckenbaugh DA, Brutsche NE, Ibrahim L, et al. Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression. Br J Clin Pharm. 2012;74:304–14.

    Article  CAS  Google Scholar 

  96. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharm Rev. 2018;70:621–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM. Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharmacol. 1997;333:99–104.

    Article  CAS  PubMed  Google Scholar 

  98. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, et al. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharmacol. 2013;698:228–34.

    Article  CAS  PubMed  Google Scholar 

  99. Oye I, Paulsen O, Maurset A. Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J Pharm Exp Ther. 1992;260:1209–13.

    CAS  Google Scholar 

  100. White Paul F, Ham J, Way Walter L, Trevor A. Pharmacology of ketamine isomers in surgical patients. Anesthesiology. 1980;52:231–39.

    Article  Google Scholar 

  101. White PF, Schüttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ. Comparative pharmacology of the ketamine isomers. Studies in volunteers. Br J Anaesth. 1985;57:197–203.

    Article  CAS  PubMed  Google Scholar 

  102. Mathisen LC, Skjelbred P, Skoglund LA, Øye I. Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain. 1995;61:215–20.

    Article  CAS  PubMed  Google Scholar 

  103. Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol. 1997;7:25–38.

    Article  CAS  PubMed  Google Scholar 

  104. Highland JN, Morris PJ, Zanos P, Lovett J, Ghosh S, Wang AQ, et al. Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R,6R)-hydroxynorketamine. J Psychopharmacol. 2019;33:12–24.

    Article  CAS  PubMed  Google Scholar 

  105. Geisslinger G, Hering W, Thomann P, Knoll R, Kamp HD, Brune K. Pharmacokinetics and pharmacodynamics of ketamine enantiomers in surgical patients using a stereoselective analytical method. Br J Anaesth. 1993;70:666–71.

    Article  CAS  PubMed  Google Scholar 

  106. Zarate CA Jr., Brutsche N, Laje G, Luckenbaugh DA, Venkata SL, Ramamoorthy A, et al. Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry. 2012;72:331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Loo CK, Gálvez V, O’Keefe E, Mitchell PB, Hadzi-Pavlovic D, Leyden J, et al. Placebo-controlled pilot trial testing dose titration and intravenous, intramuscular and subcutaneous routes for ketamine in depression. Acta Psychiatr Scand. 2016;134:48–56.

    Article  CAS  PubMed  Google Scholar 

  108. Clements JA, Nimmo WS, Grant IS. Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J Pharm Sci. 1982;71:539–42.

    Article  CAS  PubMed  Google Scholar 

  109. Lapidus KA, Levitch CF, Perez AM, Brallier JW, Parides MK, Soleimani L, et al. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry. 2014;76:970–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Canuso CM, Singh JB, Fedgchin M, Alphs L, Lane R, Lim P, et al. Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized, placebo-controlled study.Am J psychiatry. 2018;175:620–30.

    Article  PubMed  Google Scholar 

  111. Daly EJ, Trivedi MH, Janik A, Li H, Zhang Y, Li X, et al. Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2019;76:893–903.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P, et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J psychiatry. 2019;176:428–38.

    Article  PubMed  Google Scholar 

  113. Jeon HJ, Ju PC, Sulaiman AH, Aziz SA, Paik JW, Tan W, et al. Long-term safety and efficacy of esketamine nasal spray plus an oral antidepressant in patients with treatment-resistant depression- an asian sub-group analysis from the SUSTAIN-2 study. Clin Psychopharmacol Neurosci. 2022;20:70–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Anand A, Mathew SJ, Sanacora G, Murrough JW, Goes FS, Altinay M, et al. Ketamine versus ECT for nonpsychotic treatment-resistant major depression. N Engl J Med. 2023;388:2315–25.

  115. McIntyre RS, Carvalho IP, Lui LMW, Majeed A, Masand PS, Gill H, et al. The effect of intravenous, intranasal, and oral ketamine in mood disorders: a meta-analysis. J Affect Disord. 2020;276:576–84.

    Article  CAS  PubMed  Google Scholar 

  116. Leal GC, Bandeira ID, Correia-Melo FS, Telles M, Mello RP, Vieira F, et al. Intravenous arketamine for treatment-resistant depression: open-label pilot study. Eur Arch Psychiatry Clin Neurosci. 2021;271:577–82.

    Article  PubMed  Google Scholar 

  117. Clinical_Trials_Data_Base. A randomized, placebo-controlled, double-blind study to assess safety and efficacy of PCN-101 in TRD. https://ClinicalTrials.gov/show/NCT05414422.

  118. Dinis-Oliveira RJ. Metabolism and metabolomics of ketamine: a toxicological approach. Forensic Sci Res. 2017;2:2–10.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Moaddel R, Venkata SL, Tanga MJ, Bupp JE, Green CE, Iyer L, et al. A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome. Talanta. 2010;82:1892–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cohen ML, Chan SL, Way WL, Trevor AJ. Distribution in the brain and metabolism of ketamine in the rat after intravenous administration. Anesthesiology. 1973;39:370–6.

    Article  CAS  PubMed  Google Scholar 

  121. Leung LY, Baillie TA. Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine. J Med Chem. 1986;29:2396–9.

    Article  CAS  PubMed  Google Scholar 

  122. Paul RK, Singh NS, Khadeer M, Moaddel R, Sanghvi M, Green CE. et al. (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function. Anesthesiology. 2014;121:149–59.

    Article  CAS  PubMed  Google Scholar 

  123. Moaddel R, Sanghvi M, Dossou KS, Ramamoorthy A, Green C, Bupp J, et al. The distribution and clearance of (2S,6S)-hydroxynorketamine, an active ketamine metabolite, in Wistar rats. Pharm Res Perspect. 2015;3:e00157.

    Article  Google Scholar 

  124. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bonaventura J, Gomez JL, Carlton ML, Lam S, Sanchez-Soto M, Morris PJ, et al. Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Mol Psychiatry. 2022;27:4144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Corazza O, Schifano F, Simonato P, Fergus S, Assi S, Stair J, et al. Phenomenon of new drugs on the Internet: the case of ketamine derivative methoxetamine. Hum Psychopharmacol. 2012;27:145–9.

    Article  CAS  PubMed  Google Scholar 

  127. Hofer KE, Grager B, Müller DM, Rauber-Lüthy C, Kupferschmidt H, Rentsch KM, et al. Ketamine-like effects after recreational use of methoxetamine. Ann Emerg Med. 2012;60:97–9.

    Article  PubMed  Google Scholar 

  128. Kjellgren A, Jonsson K. Methoxetamine (MXE)-a phenomenological study of experiences induced by a “legal high” from the internet. J Psychoact Drugs. 2013;45:276–86.

    Article  Google Scholar 

  129. Striebel JM, Nelson EE, Kalapatapu RK. “Being with a buddha”: a case report of methoxetamine use in a united states veteran with PTSD. Case Rep Psychiatry. 2017;2017:2319094.

    PubMed  PubMed Central  Google Scholar 

  130. Morris H, Wallach J. From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs. Drug Test Anal. 2014;6:614–32.

    Article  CAS  PubMed  Google Scholar 

  131. Horsley RR, Lhotkova E, Hajkova K, Jurasek B, Kuchar M, Palenicek T. Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue—behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Res Bull. 2016;126:102–10.

    Article  CAS  PubMed  Google Scholar 

  132. Roth BL, Gibbons S, Arunotayanun W, Huang XP, Setola V, Treble R, et al. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS ONE. 2013;8:e59334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hondebrink L, Kasteel EEJ, Tukker AM, Wijnolts FMJ, Verboven AHA, Westerink RHS. Neuropharmacological characterization of the new psychoactive substance methoxetamine. Neuropharmacology. 2017;123:1–9.

    Article  CAS  PubMed  Google Scholar 

  134. Chiamulera C, Armani F, Mutti A, Fattore L. The ketamine analogue methoxetamine generalizes to ketamine discriminative stimulus in rats. Behav Pharm. 2016;27:204–10.

    Article  CAS  Google Scholar 

  135. Zanda MT, Fadda P, Antinori S, Di Chio M, Fratta W, Chiamulera C, et al. Methoxetamine affects brain processing involved in emotional response in rats. Br J Pharm. 2017;174:3333–45.

    Article  CAS  Google Scholar 

  136. Páleníček T, Fujáková M, Brunovský M, Balíková M, Horáček J, Gorman I, et al. Electroencephalographic spectral and coherence analysis of ketamine in rats: correlation with behavioral effects and pharmacokinetics. Neuropsychobiology. 2011;63:202–18.

    Article  PubMed  Google Scholar 

  137. Renner UD, Oertel R, Kirch W. Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit. 2005;27:655–65.

    Article  CAS  PubMed  Google Scholar 

  138. Damaj MI, Carroll FI, Eaton JB, Navarro HA, Blough BE, Mirza S, et al. Enantioselective effects of hydroxy metabolites of bupropion on behavior and on function of monoamine transporters and nicotinic receptors. Mol Pharm. 2004;66:675–82.

    Article  CAS  Google Scholar 

  139. Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N Engl J Med. 2022;387:1637–48.

    Article  CAS  PubMed  Google Scholar 

  140. Vollenweider FX, Preller KH. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci. 2020;21:611–24.

    Article  CAS  PubMed  Google Scholar 

  141. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118:e2022489118.

Download references

Funding

The group of HAL has been funded by the National Institute of Mental Health (MH1230823), the National Institute of General Medical Science (GM123582), National Institute on Drug Abuse (DA043829, DA049140), and the California Tobacco-Related Disease Research Program (27IP-0057). KB was supported by the Della Martin Foundation and the Howard Hughes Medical Institute. The group of EC was supported by the Academy of Finland (294710, 303124, 307416 and 327192), Sigrid Jusélius Foundation, and Jane and Aatos Erkko Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and edited all portions of the manuscript. KB provided final formatting of Table 1 and the Supplementary Files and also conceived the Figures.

Corresponding author

Correspondence to Henry A. Lester.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenfeld, Z., Bera, K., Castrén, E. et al. Antidepressants enter cells, organelles, and membranes. Neuropsychopharmacol. 49, 246–261 (2024). https://doi.org/10.1038/s41386-023-01725-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01725-x

Search

Quick links