Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Voltage-gated potassium channels control extended access cocaine seeking: a role for nucleus accumbens astrocytes

Subjects

A Correction to this article was published on 01 December 2023

This article has been updated

Abstract

Dopaminergic signaling in the nucleus accumbens shell (NAc) regulates neuronal activity relevant to reward-related learning, including cocaine-associated behaviors. Although astrocytes respond to dopamine and cocaine with structural changes, the impact of dopamine and cocaine on astrocyte functional plasticity has not been widely studied. Specifically, behavioral implications of voltage-gated channel activity in the canonically non-excitable astrocytes are not known. We characterized potassium channel function in NAc astrocytes following exposure to exogenous dopamine or cocaine self-administration training under short (2 h/day) and extended (6 h/day) access schedules. Electrophysiological, Ca2+ imaging, mRNA, and mass spectrometry tools were used for molecular characterization. Behavioral effects were examined after NAc-targeted microinjections of channel antagonists and astroglial toxins. Exogenous dopamine increased activity of currents mediated by voltage-gated (Kv7) channels in NAc astrocytes. This was associated with a ~5-fold increase in expression of Kcnq2 transcript level in homogenized NAc micropunches. Matrix-assisted laser desorption/ionization mass spectrometry revealed increased NAc dopamine levels in extended access, relative to short access, rats. Kv7 inhibition selectively increased frequency and amplitude of astrocyte intracellular Ca2+ transients in NAc of extended access rats. Inhibition of Kv7 channels in the NAc attenuated cocaine-seeking in extended access rats only, an effect that was occluded by microinjection of the astrocyte metabolic poison, fluorocitrate. These results suggest that voltage-gated K+ channel signaling in NAc astrocytes is behaviorally relevant, support Kv7-mediated regulation of astrocyte Ca2+ signals, and propose novel mechanisms of neuroglial interactions relevant to drug use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dopamine decreases astrocyte sensitivity to 4-AP.
Fig. 2: Dopamine upregulates Kcnq transcript levels and astrocyte Kv7 activity.
Fig. 3: NAc dopamine metabolism differences after short and extended access cocaine.
Fig. 4: Kv7 regulates astrocyte Ca2+ after short- and extended-access cocaine.
Fig. 5: NAc astrocytes are required for XE 991-mediated attenuation of cocaine seeking after extended access to cocaine.

Similar content being viewed by others

Change history

References

  1. Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev. 2006;30:215–38.

    Article  PubMed  CAS  Google Scholar 

  2. Roberts DC, Koob GF, Klonoff P, Fibiger HC. Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav. 1980;12:781–7.

    Article  PubMed  CAS  Google Scholar 

  3. Pettit HO, Ettenberg A, Bloom FE, Koob GF. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology. 1984;84:167–73.

    Article  PubMed  CAS  Google Scholar 

  4. Ortinski PI, Briand LA, Pierce RC, Schmidt HD. Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons. Neuropharmacology. 2015;92:80–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry. 2022;27:669–86.

    Article  PubMed  CAS  Google Scholar 

  6. O'Donovan B, Neugornet A, Neogi R, Xia M, Ortinski P. Cocaine experience induces functional adaptations in astrocytes: Implications for synaptic plasticity in the nucleus accumbens shell. Addict Biol. 2021;26:e13042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wang J, Li KL, Shukla A, Beroun A, Ishikawa M, Huang X, et al. Cocaine triggers astrocyte-mediated synaptogenesis. Biol Psychiatry. 2021;89:386–97.

    Article  PubMed  CAS  Google Scholar 

  8. LaRese TP, Rheaume BA, Abraham R, Eipper BA, Mains RE. Sex-specific gene expression in the mouse nucleus accumbens before and after cocaine exposure. J Endocr Soc. 2019;3:468–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Campbell RR, Chen S, Beardwood JH, Lopez AJ, Pham LV, Keiser AM, et al. Cocaine induces paradigm-specific changes to the transcriptome within the ventral tegmental area. Neuropsychopharmacology. 2021;46:1768–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gelernter J, Sherva R, Koesterer R, Almasy L, Zhao H, Kranzler HR, et al. Genome-wide association study of cocaine dependence and related traits: FAM53B identified as a risk gene. Mol Psychiatry. 2014;19:717–23.

    Article  PubMed  CAS  Google Scholar 

  11. Sontheimer H. Voltage-dependent ion channels in glial cells. Glia. 1994;11:156–72.

    Article  PubMed  CAS  Google Scholar 

  12. Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron. 2017;95:531–549.e9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Briand LA, Flagel SB, Garcia-Fuster MJ, Watson SJ, Akil H, Sarter M, et al. Persistent alterations in cognitive function and prefrontal dopamine D2 receptors following extended, but not limited, access to self-administered cocaine. Neuropsychopharmacology. 2008;33:2969–80.

    Article  PubMed  CAS  Google Scholar 

  14. Ahmed SH, Koob GF. Changes in response to a dopamine receptor antagonist in rats with escalating cocaine intake. Psychopharmacology. 2004;172:450–4.

    Article  PubMed  CAS  Google Scholar 

  15. Ferrario CR, Gorny G, Crombag HS, Li Y, Kolb B, Robinson TE. Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol Psychiatry. 2005;58:751–9.

    Article  PubMed  CAS  Google Scholar 

  16. Mantsch JR, Yuferov V, Mathieu-Kia AM, Ho A, Kreek MJ. Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacology. 2004;175:26–36.

    Article  PubMed  CAS  Google Scholar 

  17. Ramoa CP, Doyle SE, Lycas MD, Chernau AK, Lynch WJ. Diminished role of dopamine D1-receptor signaling with the development of an addicted phenotype in rats. Biol Psychiatry. 2014;76:8–14.

    Article  PubMed  CAS  Google Scholar 

  18. Mateo Y, Lack CM, Morgan D, Roberts DC, Jones SR. Reduced dopamine terminal function and insensitivity to cocaine following cocaine binge self-administration and deprivation. Neuropsychopharmacology. 2005;30:1455–63.

    Article  PubMed  CAS  Google Scholar 

  19. Galloway A, Adeluyi A, O’Donovan B, Fisher ML, Rao CN, Critchfield P, et al. Dopamine triggers CTCF-dependent morphological and genomic remodeling of astrocytes. J Neurosci. 2018;38:4846–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Corkrum M, Covelo A, Lines J, Bellocchio L, Pisansky M, Loke K, et al. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron. 2020;105:1036–1047.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pan HT, Menacherry S, Justice JB Jr. Differences in the pharmacokinetics of cocaine in naive and cocaine-experienced rats. J Neurochem. 1991;56:1299–306.

    Article  PubMed  CAS  Google Scholar 

  22. Pettit HO, Pan HT, Parsons LH, Justice JB. Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration. J Neurochem. 1990;55:798–804.

    Article  PubMed  CAS  Google Scholar 

  23. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. London: Academic Press; 2007.

  24. O’Donovan B, Adeluyi A, Anderson EL, Cole RD, Turner JR, Ortinski PI. Altered gating of K(v)1.4 in the nucleus accumbens suppresses motivation for reward. Elife. 2019;1–22.

  25. Neugornet A, O’Donovan B, Ortinski PI. Comparative effects of event detection methods on the analysis and interpretation of Ca(2+) imaging data. Front Neurosci. 2021;15:620869.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  27. Conroy LR, Stanback AE, Young LEA, Clarke HA, Austin GL, Liu J, et al. In situ analysis of N-linked glycans as potential biomarkers of clinical course in human prostate cancer. Mol Cancer Res. 2021;19:1727–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Conroy LR, Hawkinson TR, Young L, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metabol. 2021;32:980–93.

    Article  CAS  Google Scholar 

  29. Hawkinson TR, Clarke HA, Young L, Conroy LR, Markussen KH, Kerch KM, et al. In situ spatial glycomic imaging of mouse and human Alzheimer’s disease brains. Alzheimer’s Dementia. 2021;18:1721–35.

    Article  PubMed  Google Scholar 

  30. Robbins J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther. 2001;90:1–19.

    Article  PubMed  CAS  Google Scholar 

  31. Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, et al. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 1989;8:3235–44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Choquet D, Korn H. Mechanism of 4-aminopyridine action on voltage-gated potassium channels in lymphocytes. J Gen Physiol. 1992;99:217–40.

    Article  PubMed  CAS  Google Scholar 

  33. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, et al. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 1994;45:1227–34.

    PubMed  CAS  Google Scholar 

  34. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8:982–1001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, et al. Molecular diversity of K+ channels. Ann N Y Acad Sci. 1999;868:233–85.

    Article  PubMed  CAS  Google Scholar 

  36. Alexander SP, Striessnig J, Kelly E, Marrion NV, Peters JA, Faccenda E, et al. The concise guide to pharmacology 2017/18: voltage-gated ion channels. Br J Pharmacol. 2017;174:S160–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Brown DA, Passmore GM. Neural KCNQ (Kv7) channels. Br J Pharmacol. 2009;156:1185–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jentsch TJ. Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci. 2000;1:21–30.

    Article  PubMed  CAS  Google Scholar 

  39. Drion G, Bonjean M, Waroux O, Scuvée-Moreau J, Liégeois JF, Sejnowski TJ, et al. M-type channels selectively control bursting in rat dopaminergic neurons. Eur J Neurosci. 2010;31:827–35.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blom SM, Schmitt N, Jensen HS. The acrylamide (S)-2 as a positive and negative modulator of Kv7 channels expressed in Xenopus laevis oocytes. PLoS One. 2009;4:e8251.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ahmed SH, Lin D, Koob GF, Parsons LH. Escalation of cocaine self-administration does not depend on altered cocaine-induced nucleus accumbens dopamine levels. J Neurochem. 2003;86:102–13.

    Article  PubMed  CAS  Google Scholar 

  42. Sun RC, Young LEA, Bruntz RC, Markussen KH, Zhou Z, Conroy LR, et al. Brain glycogen serves as a critical glucosamine cache required for protein glycosylation. Cell Metabol. 2021;33:1404–17.e9.

    Article  CAS  Google Scholar 

  43. Stanback AE, Conroy LR, Young LEA, Hawkinson TR, Markussen KH, Clarke HA, et al. Regional N-glycan and lipid analysis from tissues using MALDI-mass spectrometry imaging. STAR Protocols. 2021;2:100304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Christian CA, Huguenard JR. Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling. Proc Natl Acad Sci USA. 2013;110:20278–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. McClain JL, Gulbransen BD. The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function, and the expression of key proteins. J Neurophysiol. 2017;117:365–75.

    Article  PubMed  CAS  Google Scholar 

  46. Koppel I, Jaanson K, Klasche A, Tuvikene J, Tiirik T, Parn A, et al. Dopamine cross-reacts with adrenoreceptors in cortical astrocytes to induce BDNF expression, CREB signaling and morphological transformation. Glia. 2018;66:206–16.

    Article  PubMed  Google Scholar 

  47. Hoffman DA, Johnston D. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J Neurosci. 1998;18:3521–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ortinski P, Reissner K, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev. 2022;137:104651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Xin W, Schuebel KE, Jair K, Cimbro R, De Biase LM, Goldman D, et al. Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacology. 2019;44:344–55.

    Article  PubMed  CAS  Google Scholar 

  50. Soldovieri MV, Miceli F, Taglialatela M. Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology. 2011;26:365–76.

    Article  PubMed  CAS  Google Scholar 

  51. Greene DL, Kang S, Hoshi N. XE991 and linopirdine are state-dependent inhibitors for Kv7/KCNQ channels that favor activated single subunits. J Pharmacol Exp Ther. 2017;362:177–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Peng H, Bian X, Ma F, Wang KW. Pharmacological modulation of the voltage-gated neuronal Kv7/KCNQ/M-channel alters the intrinsic excitability and synaptic responses of pyramidal neurons in rat prefrontal cortex slices. Acta Pharmacol Sin. 2017;38:1248–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Reissner KJ, Pletnikov MV. Contributions of nonneuronal brain cells in substance use disorders. Neuropsychopharmacology. 2020;45:224–5.

    Article  PubMed  Google Scholar 

  54. Kim S, Kwon J, Park MG, Lee CJ. Dopamine-induced astrocytic Ca(2+) signaling in mPFC is mediated by MAO-B in young mice, but by dopamine receptors in adult mice. Mol Brain. 2022;15:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Pittolo S, Yokoyama S, Willoughby DD, Taylor CR, Reitman ME, Tse V, et al. Dopamine activates astrocytes in prefrontal cortex via alpha1-adrenergic receptors. Cell Rep. 2022;40:111426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Testen A, Sepulveda-Orengo MT, Gaines CH, Reissner KJ. Region-specific reductions in morphometric properties and synaptic colocalization of astrocytes following cocaine self-administration and extinction. Front Cell Neurosci. 2018;12:246.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim R, Testen A, Harder EV, Brown NE, Witt EA, Bellinger TJ, et al. Abstinence-dependent effects of long-access cocaine self-administration on nucleus accumbens astrocytes are observed in male, but not female, rats. eNeuro. 2022;9:1–14.

  58. Zhang YV, Ormerod KG, Littleton JT. Astrocyte Ca(2+) influx negatively regulates neuronal activity. eNeuro. 2017;4:1–12.

  59. Liu Y, Hua Y, Park K, Volkow ND, Pan Y, Du C. Cocaine’s cerebrovascular vasoconstriction is associated with astrocytic Ca(2+) increase in mice. Commun Biol 2022;5:936.

  60. Krogsgaard A, Sperling L, Dahlqvist M, Thomsen K, Vydmantaite G, Li F, et al. PV interneurons evoke astrocytic Ca(2+) responses in awake mice, which contributes to neurovascular coupling. Glia. 2023;71:1830–46.

    Article  PubMed  CAS  Google Scholar 

  61. King CM, Bohmbach K, Minge D, Delekate A, Zheng K, Reynolds J, et al. Local resting Ca(2+) controls the scale of astroglial Ca(2+) signals. Cell Rep. 2020;30:3466–3477.e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Goenaga J, Araque A, Kofuji P, Herrera Moro Chao D. Calcium signaling in astrocytes and gliotransmitter release. Front Synaptic Neurosci. 2023;15:1138577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kozoriz MG, Church J, Ozog MA, Naus CC, Krebs C. Temporary sequestration of potassium by mitochondria in astrocytes. J Biol Chem. 2010;285:31107–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kravenska Y, Checchetto V, Szabo I. Routes for potassium ions across mitochondrial membranes: a biophysical point of view with special focus on the ATP-sensitive K(+) channel. Biomolecules. 2021;11:1172.

  65. Yaguchi T, Nishizaki T. Extracellular high K+ stimulates vesicular glutamate release from astrocytes by activating voltage-dependent calcium channels. J Cell Physiol. 2010;225:512–8.

    Article  PubMed  CAS  Google Scholar 

  66. Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS. TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci. 2011;15:70–80.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mooney J, Rawls SM. KCNQ2/3 channel agonist flupirtine reduces cocaine place preference in rats. Behav Pharmacol. 2017;28:405–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Parrilla-Carrero J, Buchta WC, Goswamee P, Culver O, McKendrick G, Harlan B, et al. Restoration of Kv7 channel-mediated inhibition reduces cued-reinstatement of cocaine seeking. J Neurosci. 2018;38:4212–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hansen HH, Andreasen JT, Weikop P, Mirza N, Scheel-Kruger J, Mikkelsen JD. The neuronal KCNQ channel opener retigabine inhibits locomotor activity and reduces forebrain excitatory responses to the psychostimulants cocaine, methylphenidate and phencyclidine. Eur J Pharmacol. 2007;570:77–88.

    Article  PubMed  CAS  Google Scholar 

  70. Hansen HH, Ebbesen C, Mathiesen C, Weikop P, Rønn LC, Waroux O, et al. The KCNQ channel opener retigabine inhibits the activity of mesencephalic dopaminergic systems of the rat. J Pharmacol Exp Ther. 2006;318:1006–19.

    Article  PubMed  CAS  Google Scholar 

  71. Koyama S, Appel SB. Characterization of M-current in ventral tegmental area dopamine neurons. J Neurophysiol. 2006;96:535–43.

    Article  PubMed  CAS  Google Scholar 

  72. Fedorenko O, Strutz-Seebohm N, Henrion U, Ureche ON, Lang F, Seebohm G, et al. A schizophrenia-linked mutation in PIP5K2A fails to activate neuronal M channels. Psychopharmacology. 2008;199:47–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the following sources of grant support: R01DA041513 (PIO), R01DA053070 (PIO, JRT), R01DA044311 (JRT), T32 DA035200 (TAA), R01AG066653, R01CA266004, R01AG078702 (RCS).

Author information

Authors and Affiliations

Authors

Contributions

MX, PIO – conception and design of the work. MX, ERP, TRH, HAC, and SBK – data acquisition and analysis. MX, TLA, and PIO – data interpretation, manuscript drafting, and manuscript revisions. PIO, JRT, and RCS – data interpretation, manuscript revisions, and final approval.

Corresponding author

Correspondence to Pavel I. Ortinski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the author name Tanner L. Anderson was incorrectly given as Tanner A. Anderson.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, M., Anderson, T.L., Prantzalos, E.R. et al. Voltage-gated potassium channels control extended access cocaine seeking: a role for nucleus accumbens astrocytes. Neuropsychopharmacol. 49, 551–560 (2024). https://doi.org/10.1038/s41386-023-01718-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01718-w

Search

Quick links