Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-intensity sweet taste as a predictor of subjective alcohol responses to the ascending limb of an intravenous alcohol prime: an fMRI study

A Correction to this article was published on 28 August 2023

This article has been updated

Abstract

High-intensity sweet-liking has been linked to alcohol use disorder (AUD) risk. However, the neural underpinning of this association is poorly understood. To find a biomarker predictive of AUD, 140 participants (social and heavy drinkers, ages 21–26) underwent functional magnetic resonance imaging (fMRI) during a monetary incentive delay (MID) task and stimulation with high (SucroseHigh)- and low-concentration sucrose, as well as viscosity-matched water. On another day after imaging, and just before free-access intravenous alcohol self-administration, participants experienced a 30 mg% alcohol prime (10 min ascent) using the Computerized Alcohol Infusion System. Principal component analysis (PCA) of subjective responses (SR) to the prime’s ascending limb generated enjoyable (SRenjoy) and sedative (SRsed) intoxication components. Another PCA created one component reflective of self-administered alcohol exposure (AE) over 90 min. Component loadings were entered as regressors in a voxel-wise general linear fMRI model, with reward type as a fixed factor. By design, peak prime breath alcohol concentration was similar across participants (29 ± 3.4 mg%). SRenjoy on the prime’s ascending limb correlated positively with [SucroseHigh > Water] in the supplementary motor area and right dorsal anterior insula, implicating the salience network. Neither SR component correlated with the brain’s response to MID. AE was unrelated to brain reward activation. While these findings do not support a relationship between alcohol self-administration and (1) subjective liking of or (2) regional brain response to an intensely sweet taste, they show that alcohol’s enjoyable intoxicating effects on the rising limb correspond with anterior insular and supplementary motor area responses to high-concentration sucrose taste. No such associations were observed with MID despite robust activation in those regions. Insula and supplementary motor area responses to intense sensations relate to a known risk factor for AUD in a way that is not apparent with a secondary (monetary) reward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BOLD activation from high-concentration sucrose (SucroseHigh) compared to water in the supplementary motor area and dorsal anterior insula correlates positively with subjective ratings of the enjoyable intoxicating effects of a fixed exposure to intravenous ethanol.
Fig. 2: BOLD activation to [SucroseHigh > Water] and MID cued anticipation, as well as their conjunction (), show similar activation of the supplementary motor area (SMA) and the dorsal anterior insula (daINS).
Fig. 3: Correlations between enjoyable intoxication from alcohol and response to supplementary motor area (SMA, top) and dorsal anterior insula (daINS, bottom) BOLD activation from high-concentration sucrose ([SucroseHigh > Water], black triangles, left) and high monetary reward ([Win5 > Neutral]cue and [Win5 > Neutral]feedback; red circles) vs their respective controls, with monetary reward contrasts at the times of reward cues (center) and feedback (right).

Similar content being viewed by others

Change history

References

  1. Kampov-Polevoy AB, Overstreet DH, Rezvani AH, Janowsky DS. Saccharin-induced increase in daily fluid intake as a predictor of voluntary alcohol intake in alcohol-preferring rats. Physiol Behav. 1995;57:791–5.

    Article  CAS  PubMed  Google Scholar 

  2. Kampov-Polevoy AB, Garbutt JC, Janowsky DS. Association between preference for sweets and excessive alcohol intake: a review of animal and human studies. Alcohol Alcohol. 1999;34:386–95.

    Article  CAS  PubMed  Google Scholar 

  3. Kareken DA, Dzemidzic M, Oberlin BG, Eiler WJ 2nd. A preliminary study of the human brain response to oral sucrose and its association with recent drinking. Alcohol Clin Exp Res. 2013;37:2058–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eiler WJA 2nd, Dzemidzic M, Soeurt CM, Carron CR, Oberlin BG, Considine RV, et al. Family history of alcoholism and the human brain response to oral sucrose. Neuroimage Clin. 2018;17:1036–46.

    Article  PubMed  Google Scholar 

  5. Rudenga KJ, Small DM. Ventromedial prefrontal cortex response to concentrated sucrose reflects liking rather than sweet quality coding. Chem Senses. 2013;38:585–94.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carney MA, Tennen H, Affleck G, Del Boca FK, Kranzler HR. Levels and patterns of alcohol consumption using timeline follow-back, daily diaries and real-time "electronic interviews". J Stud Alcohol. 1998;59:447–54.

    Article  CAS  PubMed  Google Scholar 

  7. Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14:2–18.

    Article  CAS  PubMed  Google Scholar 

  8. Volkow ND, Wise RA. How can drug addiction help us understand obesity? Nat Neurosci. 2005;8:555–60.

    Article  CAS  PubMed  Google Scholar 

  9. Sescousse G, Caldu X, Segura B, Dreher JC. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37:681–96.

    Article  PubMed  Google Scholar 

  10. Abrantes AM, Kunicki Z, Braun T, Miranda R Jr., Blevins CE, Brick L, et al. Daily associations between alcohol and sweets craving and consumption in early AUD recovery: results from an ecological momentary assessment study. J Subst Abus Treat. 2022;132:108614.

    Article  CAS  Google Scholar 

  11. Schuckit MA. Low level of response to alcohol as a predictor of future alcoholism. Am J Psychiatry. 1994;151:184–9.

    Article  CAS  PubMed  Google Scholar 

  12. King A, Vena A, Hasin DS, deWit H, O’Connor SJ, Cao D. Subjective responses to alcohol in the development and maintenance of alcohol use disorder. Am J Psychiatry. 2021;178:560–71.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Newlin DB, Thomson JB. Alcohol challenge with sons of alcoholics: a critical review and analysis. Psychol Bull. 1990;108:383–402.

    Article  CAS  PubMed  Google Scholar 

  14. Zimmermann US, Mick I, Vitvitskyi V, Plawecki MH, Mann KF, O’Connor S. Development and pilot validation of computer-assisted self-infusion of ethanol (CASE): a new method to study alcohol self-administration in humans. Alcohol Clin Exp Res. 2008;32:1321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Plawecki MH, Decarlo R, Ramchandani VA, O’Connor S. Improved transformation of morphometric measurements for a priori parameter estimation in a physiologically-based pharmacokinetic model of ethanol. Biomed Signal Process Control. 2007;2:97–110.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ramchandani VA, Plawecki M, Li TK, O’Connor S. Intravenous ethanol infusions can mimic the time course of breath alcohol concentrations following oral alcohol administration in healthy volunteers. Alcohol Clin Exp Res. 2009;33:938–44.

    Article  CAS  PubMed  Google Scholar 

  17. Cyders MA, Plawecki MH, Corbin W, King A, McCarthy DM, Ramchandani VA, et al. To infuse or ingest in human laboratory alcohol research. Alcohol Clin Exp Res. 2020;44:764–76.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI Jr., et al. A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J Stud Alcohol. 1994;55:149–58.

    Article  CAS  PubMed  Google Scholar 

  19. Sobell MB, Sobell LC, Klajner F, Pavan D, Basian E. The reliability of a timeline method for assessing normal drinker college students’ recent drinking history: utility for alcohol research. Addict Behav. 1986;11:149–61.

    Article  CAS  PubMed  Google Scholar 

  20. Costa PT, McCrae RR. Normal personality assessment in clinical practice: the NEO Personality Inventory. Psychol Assess. 1992;4:5–13.

    Article  Google Scholar 

  21. Radloff LS. The CES-D Scale. Appl Psychol Meas. 1977;1:385–401.

    Article  Google Scholar 

  22. Cyders MA, Littlefield AK, Coffey S, Karyadi KA. Examination of a short English version of the UPPS-P Impulsive Behavior Scale. Addict Behav. 2014;39:1372–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saunders JB, Aasland OG, Babor TF, de la Fuente JR, Grant M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection Of Persons With Harmful Alcohol Consumption–II. Addiction. 1993;88:791–804.

    Article  CAS  PubMed  Google Scholar 

  24. Rice JP, Reich T, Bucholz KK, Neuman RJ, Fishman R, Rochberg N, et al. Comparison of direct interview and family history diagnoses of alcohol dependence. Alcohol Clin Exp Res. 1995;19:1018–23.

  25. Green B, Shaffer G, Gilmore M. A semantically-labeled magnitude scale of oral sensation with apparent ratio properties. Chem Senses. 1993;18:683–702.

    Article  Google Scholar 

  26. Marciani L, Pfeiffer JC, Hort J, Head K, Bush D, Taylor AJ, et al. Improved methods for fMRI studies of combined taste and aroma stimuli. J Neurosci Methods. 2006;158:186–94.

    Article  PubMed  Google Scholar 

  27. Knutson B, Westdorp A, Kaiser E, Hommer D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage. 2000;12:20–7.

    Article  CAS  PubMed  Google Scholar 

  28. Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med. 2000;44:457–65.

    Article  CAS  PubMed  Google Scholar 

  29. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62:782–90.

    Article  PubMed  Google Scholar 

  30. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41.

    Article  PubMed  Google Scholar 

  31. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–55.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage. 2015;112:267–77.

    Article  PubMed  Google Scholar 

  33. Liu RX, Kuang J, Gong Q, Hou XL. Principal component regression analysis with SPSS. Comput Methods Prog Biomed. 2003;71:141–7.

    Article  CAS  Google Scholar 

  34. Ashburner J, Barnes G, Chen C-C, Daunizeau J, Flandin G, Friston K, et al. SPM12 manual. London, UK: Wellcome Trust Centre for Neuroimaging; 2014. p. 4.

  35. Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci. 2020;23:1421–32.

    Article  CAS  PubMed  Google Scholar 

  36. Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA. 2016;113:7900–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roberts CA, Giesbrecht T, Fallon N, Thomas A, Mela DJ, Kirkham TC. A systematic review and activation likelihood estimation meta-analysis of fMRI studies on sweet taste in humans. J Nutr. 2020;150:1619–30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Centanni SW, Janes AC, Haggerty DL, Atwood B, Hopf FW. Better living through understanding the insula: why subregions can make all the difference. Neuropharmacology. 2021;198:108765.

    Article  CAS  PubMed  Google Scholar 

  39. Craig AD. Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci. 2005;9:566–71.

    Article  PubMed  Google Scholar 

  40. Craig AD. How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.

    Article  CAS  PubMed  Google Scholar 

  41. Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann NY Acad Sci. 2011;1225:72–82.

    Article  PubMed  Google Scholar 

  42. Vogt BA. Midcingulate cortex: structure, connections, homologies, functions and diseases. J Chem Neuroanat. 2016;74:28–46.

    Article  CAS  PubMed  Google Scholar 

  43. Uddin LQ, Yeo BTT, Spreng RN. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 2019;32:926–42.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science. 2007;315:531–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28:309–69.

    Article  CAS  PubMed  Google Scholar 

  46. Volkow ND, Michaelides M, Baler R. The neuroscience of drug reward and addiction. Physiol Rev. 2019;99:2115–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  49. Grodin EN, Cortes CR, Spagnolo PA, Momenan R. Structural deficits in salience network regions are associated with increased impulsivity and compulsivity in alcohol dependence. Drug Alcohol Depend. 2017;179:100–8.

    Article  PubMed  Google Scholar 

  50. Halcomb ME, Chumin EJ, Goni J, Dzemidzic M, Yoder KK. Aberrations of anterior insular cortex functional connectivity in nontreatment-seeking alcoholics. Psychiatry Res Neuroimaging. 2019;284:21–28.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Joutsa J, Moussawi K, Siddiqi SH, Abdolahi A, Drew W, Cohen AL, et al. Brain lesions disrupting addiction map to a common human brain circuit. Nat Med. 2022;28:1249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim H. Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a meta-analysis. Hum Brain Mapp. 2014;35:2265–84.

    Article  PubMed  Google Scholar 

  53. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.

    Article  CAS  PubMed  Google Scholar 

  54. Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist. 2014;20:150–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Uddin LQ, Supekar KS, Ryali S, Menon V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J Neurosci. 2011;31:18578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Uddin LQ, Nomi JS, Hebert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. J Clin Neurophysiol. 2017;34:300–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Zhu L, Zou Q, Cui Q, Liao W, Duan X, et al. Frequency dependent hub role of the dorsal and ventral right anterior insula. Neuroimage. 2018;165:112–7.

    Article  PubMed  Google Scholar 

  58. Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24:97–29.

    Article  CAS  PubMed  Google Scholar 

  59. Barrett LF, Simmons WK. Interoceptive predictions in the brain. Nat Rev Neurosci. 2015;16:419–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pepino MY, Mennella JA. Effects of cigarette smoking and family history of alcoholism on sweet taste perception and food cravings in women. Alcohol Clin Exp Res. 2007;31:1891–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lange LA, Kampov-Polevoy AB, Garbutt JC. Sweet liking and high novelty seeking: independent phenotypes associated with alcohol-related problems. Alcohol Alcohol. 2010;45:431–6.

    Article  PubMed  Google Scholar 

  62. Kampov-Polevoy A, Garbutt JC, Janowsky D. Evidence of preference for a high-concentration sucrose solution in alcoholic men. Am J Psychiatry. 1997;154:269–70.

    Article  CAS  PubMed  Google Scholar 

  63. Kampov-Polevoy AB, Garbutt JC, Davis CE, Janowsky DS. Preference for higher sugar concentrations and Tridimensional Personality Questionnaire scores in alcoholic and nonalcoholic men. Alcohol Clin Exp Res. 1998;22:610–4.

    Article  CAS  PubMed  Google Scholar 

  64. Kampov-Polevoy AB, Garbutt JC, Khalitov E. Family history of alcoholism and response to sweets. Alcohol Clin Exp Res. 2003;27:1743–9.

    Article  PubMed  Google Scholar 

  65. Wronski M, Skrok-Wolska D, Samochowiec J, Ziolkowski M, Swiecicki L, Bienkowski P, et al. Perceived intensity and pleasantness of sucrose taste in male alcoholics. Alcohol Alcohol. 2007;42:75–9.

    Article  PubMed  Google Scholar 

  66. Krahn D, Grossman J, Henk H, Mussey M, Crosby R, Gosnell B. Sweet intake, sweet-liking, urges to eat, and weight change: relationship to alcohol dependence and abstinence. Addict Behav. 2006;31:622–31.

    Article  PubMed  Google Scholar 

  67. Kranzler HR, Sandstrom KA, Van Kirk J. Sweet taste preference as a risk factor for alcohol dependence. Am J Psychiatry. 2001;158:813–5.

    Article  CAS  PubMed  Google Scholar 

  68. Tremblay KA, Bona JM, Kranzler HR. Effects of a diagnosis or family history of alcoholism on the taste intensity and hedonic value of sucrose. Am J Addict. 2009;18:494–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kampov-Polevoy A, Lange L, Bobashev G, Eggleston B, Root T, Garbutt JC. Sweet-liking is associated with transformation of heavy drinking into alcohol-related problems in young adults with high novelty seeking. Alcohol Clin Exp Res. 2014;38:2119–26.

    Article  PubMed  Google Scholar 

  70. Kampov-Polevoy A, Tzoi M, Zvartau E, Crews F, Neznanov N. Sweet liking, family history of alcoholism, blood glucose level, and alcohol craving in hospitalized alcoholics. Alcohol: Clin Exp Res. 1998;22:197А–97А.

    Google Scholar 

  71. Bujarski S, Jentsch JD, Roche DJO, Ramchandani VA, Miotto K, Ray LA. Differences in the subjective and motivational properties of alcohol across alcohol use severity: application of a novel translational human laboratory paradigm. Neuropsychopharmacology. 2018;43:1891–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sloan ME, Gowin JL, Janakiraman R, Ester CD, Stoddard J, Stangl B, et al. High-risk social drinkers and heavy drinkers display similar rates of alcohol consumption. Addict Biol. 2020;25:e12734.

    Article  PubMed  Google Scholar 

  73. Gowin JL, Sloan ME, Stangl BL, Vatsalya V, Ramchandani VA. Vulnerability for alcohol use disorder and rate of alcohol consumption. Am J Psychiatry. 2017;174:1094–101.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Stangl BL, Vatsalya V, Zametkin MR, Cooke ME, Plawecki MH, O’Connor S, et al. Exposure-response relationships during free-access intravenous alcohol self-administration in nondependent drinkers: influence of alcohol expectancies and impulsivity. Int J Neuropsychopharmacol. 2017;20:31–39.

    PubMed  Google Scholar 

  75. Zimmermann US, Mick I, Laucht M, Vitvitskiy V, Plawecki MH, Mann KF, et al. Offspring of parents with an alcohol use disorder prefer higher levels of brain alcohol exposure in experiments involving computer-assisted self-infusion of ethanol (CASE). Psychopharmacology. 2009;202:689–97.

    Article  CAS  PubMed  Google Scholar 

  76. Quinn PD, Fromme K. Subjective response to alcohol challenge: a quantitative review. Alcohol Clin Exp Res. 2011;35:1759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. King AC, de Wit H, McNamara PJ, Cao D. Rewarding, stimulant, and sedative alcohol responses and relationship to future binge drinking. Arch Gen Psychiatry. 2011;68:389–99.

    Article  PubMed  PubMed Central  Google Scholar 

  78. King AC, McNamara PJ, Hasin DS, Cao D. Alcohol challenge responses predict future alcohol use disorder symptoms: a 6-year prospective study. Biol Psychiatry. 2014;75:798–806.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Azziza Ahdoot, Rachel Baum, Paige Erb, Tetlu Myint, Caron Peper, Kathryn Snyder, Christina Souert, Shreya Patel. Dr. Claire Carron, and Cari Tsinovoi for subject recruiting and management, Drs. Sarine Janetsian-Fritz and William J.A. Eiler for intellectual contributions to previous iterations of this project, Dr. Yu-Chien Wu, Dr. Sourajit Mustafi, Michele Dragoo, Traci Day, and Robert Bryant Jr. for technical assistance with MRI, Keegan Sawin and Hannah Marotta for assistance with data management and study day expertise, and Dwight Hector, Ph.D. for design refinements and construction of the gustometer. We further thank Dr. Brian Knutson for permitting us the use of his monetary incentive delay task as well as Dr. James Bjork for early discussions on its use.

Funding

This work was supported by an NIAAA fellowship T32 AA07462 to JPA, and by R01 AA022476, P60 AA007611 to DAK.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: DAK, MD, JH, SJO’C, AEKK; data collection: GC, KB; analysis and interpretation of results: JPA, DAK, MD, GC, KB. Draft manuscript preparation: JPA, MD, DAK. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to David A. Kareken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the publication date for reference 21 was corrected from 2016 to 1977. The correct reference should read “Radloff LS. The CES-D Scale. Appl Psychol Meas. 1977;1:385–401”.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessi, J., Dzemidzic, M., Benson, K. et al. High-intensity sweet taste as a predictor of subjective alcohol responses to the ascending limb of an intravenous alcohol prime: an fMRI study. Neuropsychopharmacol. 49, 396–404 (2024). https://doi.org/10.1038/s41386-023-01684-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01684-3

Search

Quick links