Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glutamatergic and GABAergic anteroventral BNST projections to PVN CRH neurons regulate maternal separation-induced visceral pain

Abstract

Early-life stress (ELS) is thought to cause the development of visceral pain disorders. While some individuals are vulnerable to visceral pain, others are resilient, but the intrinsic circuit and molecular mechanisms involved remain largely unclear. Herein, we demonstrate that inbred mice subjected to maternal separation (MS) could be separated into susceptible and resilient subpopulations by visceral hypersensitivity evaluation. Through a combination of chemogenetics, optogenetics, fiber photometry, molecular and electrophysiological approaches, we discovered that susceptible mice presented activation of glutamatergic projections or inhibition of GABAergic projections from the anteroventral bed nucleus of the stria terminalis (avBNST) to paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons. However, resilience develops as a behavioral adaptation partially due to restoration of PVN SK2 channel expression and function. Our findings suggest that PVN CRH neurons are dually regulated by functionally opposing avBNST neurons and that this circuit may be the basis for neurobiological vulnerability to visceral pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Separation of mice exposed to MS into susceptible and unsusceptible populations.
Fig. 2: Activation of CRH neurons within the PVN mediates susceptibility.
Fig. 3: Mapping of the connections between glutamatergic and GABAergic avBNST neurons and PVN CRH neurons.
Fig. 4: Identification of the functional connections in the GABAergic/glutamatergic avBNST-PVN CRH neuron pathway and the effect of optogenetic modulation of this pathway on behavior.
Fig. 5: Restoring SK2 expression and function in resilient mice rescues visceral hypersensitivity.

Similar content being viewed by others

References

  1. Prusator DK, Andrews A, Greenwood-Van Meerveld B. Neurobiology of early life stress and visceral pain: translational relevance from animal models to patient care. Neurogastroenterol Motil. 2016;28:1290–305.

    Article  CAS  PubMed  Google Scholar 

  2. de Maat DA, Schuurmans IK, Jongerling J, Metcalf SA, Lucassen N, Franken IHA, et al. Early life stress and behavior problems in early childhood: investigating the contributions of child temperament and executive functions to resilience. Child Dev. 2022;93:e1–e16.

    PubMed  Google Scholar 

  3. Farmer AD, Aziz Q. Gut pain & visceral hypersensitivity. Br J Pain. 2013;7:39–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tang HL, Zhang G, Ji NN, Du L, Chen BB, Hua R, et al. Toll-like receptor 4 in paraventricular nucleus mediates visceral hypersensitivity induced by maternal separation. Front Pharm. 2017;8:309.

    Article  Google Scholar 

  5. Colmers PLW, Bains JS. Balancing tonic and phasic inhibition in hypothalamic corticotropin-releasing hormone neurons. J Physiol. 2018;596:1919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu J, Li Q, Xu D, Liao Y, Wang H. Programming of a developmental imbalance in hypothalamic glutamatergic/GABAergic afferents mediates low basal activity of the hypothalamic-pituitary-adrenal axis induced by prenatal dexamethasone exposure in male offspring rats. Toxicol Lett. 2020;331:33–41.

    Article  CAS  PubMed  Google Scholar 

  7. Banihashemi L, Sheu LK, Midei AJ, Gianaros PJ. Childhood physical abuse predicts stressor-evoked activity within central visceral control regions. Soc Cogn Affect Neurosci. 2015;10:474–85.

    Article  PubMed  Google Scholar 

  8. Banihashemi L, O'Neill EJ, Rinaman L. Central neural responses to restraint stress are altered in rats with an early life history of repeated brief maternal separation. Neuroscience. 2011;192:413–28.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao Q, Zhou X, Wei P, Xie L, Han Y, Wang J, et al. A new GABAergic somatostatin projection from the BNST onto accumbal parvalbumin neurons controls anxiety. Mol Psychiatry. 2020;26:4719–41.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salimando GJ, Hyun M, Boyt KM, Winder DG. BNST GluN2D-containing NMDA receptors influence anxiety- and depressive-like behaviors and modulatecell-specific excitatory/inhibitory synaptic balance. J Neurosci. 2020;40:3949–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kasten CR, Carzoli KL, Sharfman NM, Henderson T, Holmgren EB, Lerner MR, et al. Adolescent alcohol exposure produces sex differences in negative affect-like behavior and group I mGluR BNST plasticity. Neuropsychopharmacology. 2020;45:1306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elharrar E, Warhaftig G, Issler O, Sztainberg Y, Dikshtein Y, Zahut R, et al. Overexpression of corticotropin-releasing factor receptor type 2 in the bed nucleus of stria terminalis improves posttraumatic stress disorder-like symptoms in a model of incubation of fear. Biol Psychiatry. 2013;74:827–36.

    Article  CAS  PubMed  Google Scholar 

  13. Song SY, Zhai XM, Dai JH, Lu LL, Shan CJ, Hong J, et al. Novel projections to the cerebrospinal fluid-contacting nucleus from the subcortex and limbic system in rat. Front Neuroanat. 2020;14:57.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Halladay LR, Herron SM. Lasting impact of postnatal maternal separation on the developing BNST: lifelong socioemotional consequences. Neuropharmacology. 2023;225:109404.

    Article  CAS  PubMed  Google Scholar 

  15. Banihashemi L, Peng CW, Rangarajan A, Karim HT, Wallace ML, Sibbach BM, et al. Childhood threat is associated with lower resting-state connectivity within a central visceral network. Front Psychol. 2022;13:805049.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sawchenko PE, Swanson LW. The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J Comp Neurol. 1983;218:121–44.

    Article  CAS  PubMed  Google Scholar 

  17. Song Y, Meng QX, Wu K, Hua R, Song ZJ, Song Y, et al. Disinhibition of PVN-projecting GABAergic neurons in AV region in BNST participates in visceral hypersensitivity in rats. Psychoneuroendocrinology. 2020;117:104690.

    Article  CAS  PubMed  Google Scholar 

  18. Cullinan WE, Herman JP, Watson SJ. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol. 1993;332:1–20.

    Article  CAS  PubMed  Google Scholar 

  19. Kudo T, Uchigashima M, Miyazaki T, Konno K, Yamasaki M, Yanagawa Y, et al. Three types of neurochemical projection from the bed nucleus of the stria terminalis to the ventral tegmental area in adult mice. J Neurosci. 2012;32:18035–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poulin JF, Arbour D, Laforest S, Drolet G. Neuroanatomical characterization of endogenous opioids in the bed nucleus of the stria terminalis. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:1356–65.

    Article  CAS  PubMed  Google Scholar 

  21. Radley JJ, Gosselink KL, Sawchenko PE. A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J Neurosci. 2009;29:7330–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radley JJ, Sawchenko PE. A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci. 2011;31:9683–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP. Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci. 2007;27:2025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson SB, Emmons EB, Anderson RM, Glanz RM, Romig-Martin SA, Narayanan NS, et al. A basal forebrain site coordinates the modulation of endocrine and behavioral stress responses via divergent neural pathways. J Neurosci. 2016;36:8687–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hiscox LV, Bray S, Fraser A, Meiser-Stedman R, Seedat S, Halligan SL. Sex differences in the severity and natural recovery of child PTSD symptoms: a longitudinal analysis of children exposed to acute trauma. Psychol Med. 2023;53:2682–8.

    Article  PubMed  Google Scholar 

  26. Giacometti LL, Huh JW, Raghupathi R. Sex and estrous-phase dependent alterations in depression-like behavior following mild traumatic brain injury in adolescent rats. J Neurosci Res. 2022;100:490–505.

    Article  CAS  PubMed  Google Scholar 

  27. Own LS, Iqbal R, Patel PD. Maternal separation alters serotonergic and HPA axis gene expression independent of separation duration in mice. Brain Res. 2013;1515:29–38.

    Article  CAS  PubMed  Google Scholar 

  28. Huang ST, Song ZJ, Liu Y, Luo WC, Yin Q, Zhang YM. BNST(AV) (GABA)-PVN(CRF) circuit regulates visceral hypersensitivity induced by maternal separation in Vgat-Cre mice. Front Pharm. 2021;12:615202.

    Article  CAS  Google Scholar 

  29. Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron. 2007;53:639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ji NN, Du L, Wang Y, Wu K, Chen ZY, Hua R, et al. Small-conductance Ca(2+)-activated K(+) channels 2 in the hypothalamic paraventricular nucleus precipitates visceral hypersensitivity induced by neonatal colorectal distension in rats. Front Pharm. 2020;11:605618.

    Article  CAS  Google Scholar 

  31. Orso R, Creutzberg KC, Wearick-Silva LE, Wendt Viola T, Tractenberg SG, Benetti F, et al. How early life stress impact maternal care: a systematic review of rodent studies. Front Behav Neurosci. 2019;13:197.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fisher H, Morgan C, Dazzan P, Craig TK, Morgan K, Hutchinson G, et al. Gender differences in the association between childhood abuse and psychosis. Br J Psychiatry. 2009;194:319–25.

    Article  PubMed  Google Scholar 

  33. Anbardan SJ, Daryani NE, Fereshtehnejad SM, Taba Taba Vakili S, Keramati MR, Ajdarkosh H. Gender role in irritable bowel syndrome: a comparison of irritable bowel syndrome module (ROME III) between male and female patients. J Neurogastroenterol Motil. 2012;18:70–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Herzberg MP, Gunnar MR. Early life stress and brain function: activity and connectivity associated with processing emotion and reward. Neuroimage. 2020;209:116493.

    Article  PubMed  Google Scholar 

  35. Louwies T, Mohammadi E, Greenwood-Van, Meerveld B. Epigenetic mechanisms underlying stress-induced visceral pain: resilience versus vulnerability in a two-hit model of early life stress and chronic adult stress. Neurogastroenterol Motil. 2023;35:e14558.

    Article  CAS  PubMed  Google Scholar 

  36. Prusator DK, Greenwood-Van, Meerveld B. Gender specific effects of neonatal limited nesting on viscerosomatic sensitivity and anxiety-like behavior in adult rats. Neurogastroenterol Motil. 2015;27:72–81.

    Article  CAS  PubMed  Google Scholar 

  37. Fuentes IM, Christianson JA. The influence of early life experience on visceral pain. Front Syst Neurosci. 2018;12:2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gunn BG, Cunningham L, Cooper MA, Corteen NL, Seifi M, Swinny JD, et al. Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response. J Neurosci. 2013; 33:19534–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cullinan WE, Ziegler DR, Herman JP. Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct. 2008;213:63–72.

    Article  CAS  PubMed  Google Scholar 

  40. Emmons R, Sadok T, Rovero NG, Belnap MA, Henderson HJM, Quan AJ, et al. Chemogenetic manipulation of the bed nucleus of the stria terminalis counteracts social behavioral deficits induced by early life stress in C57BL/6J mice. J Neurosci Res. 2021;99:90–109.

    Article  CAS  PubMed  Google Scholar 

  41. Jennings JH, Sparta DR, Stamatakis AM, Ung RL, Pleil KE, Kash TL, et al. Distinct extended amygdala circuits for divergent motivational states. Nature. 2013;496:224–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gungor NZ, Yamamoto R, Pare D. Glutamatergic and gabaergic ventral BNST neurons differ in their physiological properties and responsiveness to noradrenaline. Neuropsychopharmacology. 2018;43:2126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Royo M, Escolano BA, Madrigal MP, Jurado S. AMPA receptor function in hypothalamic synapses. Front Synaptic Neurosci. 2022;14:833449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Glangetas C, Massi L, Fois GR, Jalabert M, Girard D, Diana M, et al. NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis. Nat Commun. 2017;8:14456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gafford GM, Ressler KJ. GABA and NMDA receptors in CRF neurons have opposing effects in fear acquisition and anxiety in central amygdala vs. bed nucleus of the stria terminalis. Horm Behav. 2015;76:136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McClellan KM, Parker KL, Tobet S. Development of the ventromedial nucleus of the hypothalamus. Front Neuroendocrinol. 2006;27:193–209.

    Article  CAS  PubMed  Google Scholar 

  47. Karigo T, Kennedy A, Yang B, Liu M, Tai D, Wahle IA, et al. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature. 2021;589:258–63.

    Article  CAS  PubMed  Google Scholar 

  48. Todd WD, Fenselau H, Wang JL, Zhang R, Machado NL, Venner A, et al. A hypothalamic circuit for the circadian control of aggression. Nat Neurosci. 2018;21:717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang K, Xue P, Xu Y, Yi Y, Zhu J, Ding L, et al. The brain mechanism of awakening dysfunction in children with primary nocturnal enuresis based on PVT-NAc neural pathway: a resting-state fMRI study. Sci Rep. 2021;11:17079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang C, Yang X, He G, Wang F, Wang Z, Xu W, et al. CRH(CeA–>VTA) inputs inhibit the positive ensembles to induce negative effect of opiate withdrawal. Mol Psychiatry. 2021;26:6170–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sorinas J, Grima MD, Ferrandez JM, Fernandez E. Identifying suitable brain regions and trial size segmentation for positive/negative emotion recognition. Int J Neural Syst. 2019;29:1850044.

    Article  PubMed  Google Scholar 

  52. Mittal C, Griskevicius V, Simpson JA, Sung S, Young ES. Cognitive adaptations to stressful environments: when childhood adversity enhances adult executive function. J Pers Soc Psychol. 2015;109:604–21.

    Article  PubMed  Google Scholar 

  53. Eaton S, Cornwell H, Hamilton-Giachritsis C, Fairchild G. Resilience and young people’s brain structure, function and connectivity: a systematic review. Neurosci Biobehav Rev. 2022;132:936–56.

    Article  PubMed  Google Scholar 

  54. Daskalakis NP, Oitzl MS, Schächinger H, Champagne DL, de Kloet ER. Testing the cumulative stress and mismatch hypotheses of psychopathology in a rat model of early-life adversity. Physiol Behav. 2012;106:707–21.

    Article  CAS  PubMed  Google Scholar 

  55. Berkefeld H, Fakler B, Schulte U. Ca2+-activated K+ channels: from protein complexes to function. Physiol Rev. 2010;90:1437–59.

    Article  CAS  PubMed  Google Scholar 

  56. Bahia PK, Suzuki R, Benton DC, Jowett AJ, Chen MX, Trezise DJ, et al. A functional role for small-conductance calcium-activated potassium channels in sensory pathways including nociceptive processes. J Neurosci. 2005;25:3489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thompson JM, Ji G, Neugebauer V. Small-conductance calcium-activated potassium (SK) channels in the amygdala mediate pain-inhibiting effects of clinically available riluzole in a rat model of arthritis pain. Mol Pain. 2015;11:51.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Honrath B, Krabbendam IE, Culmsee C, Dolga AM. Small conductance Ca(2+)-activated K(+) channels in the plasma membrane, mitochondria and the ER: pharmacology and implications in neuronal diseases. Neurochem Int. 2017;109:13–23.

    Article  CAS  PubMed  Google Scholar 

  59. Song Y, Zhu JS, Hua R, Du L, Huang ST, Stackman RW Jr, et al. Small-conductance Ca(2+)-activated K(+) channel 2 in the dorsal horn of spinal cord participates in visceral hypersensitivity in rats. Front Pharm. 2018;9:840.

    Article  Google Scholar 

  60. Wu K, Gao JH, Hua R, Peng XH, Wang H, Zhang YM. Predisposition of neonatal maternal separation to visceral hypersensitivity via downregulation of small-conductance calcium-activated potassium channel subtype 2 (SK2) in mice. Neural Plast. 2020;2020:8876230.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Winter L, Saryyeva A, Schwabe K, Heissler HE, Runge J, Alam M, et al. Long-term deep brain stimulation in treatment-resistant obsessive-compulsive disorder: outcome and quality of life at four to eight years follow-up. Neuromodulation. 2020;24:324–30.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding

The present study was supported by STI2030-Major Projects (2021ZD0203100), the National Natural Science Foundation of China (Grant Numbers 82271257, 82071228), and Startup Funds from Xuzhou Medical University (RC20552252).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: STH, YMZ. Methodology and Investigation: STH, KW, MMG, SS. Supervision: RH, YMZ. Funding acquisition: STH, YMZ. Writing-original draft: STH, YMZ. Writing-revies & editing: STH, KW, MMG, SS, RH, YMZ.

Corresponding author

Correspondence to Yong-Mei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, ST., Wu, K., Guo, MM. et al. Glutamatergic and GABAergic anteroventral BNST projections to PVN CRH neurons regulate maternal separation-induced visceral pain. Neuropsychopharmacol. 48, 1778–1788 (2023). https://doi.org/10.1038/s41386-023-01678-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01678-1

This article is cited by

Search

Quick links