Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The future of brain circuit-targeted therapeutics

Abstract

The principle of targeting brain circuits has drawn increasing attention with the growth of brain stimulation treatments such as transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), and focused ultrasound (FUS). Each of these techniques can effectively treat different neuropsychiatric disorders, but treating any given disorder depends on choosing the right treatment target. Here, we propose a three-phase framework for identifying and modulating these targets. There are multiple approaches to identifying a target, including correlative neuroimaging, retrospective optimization based on existing stimulation sites, and lesion localization. These techniques can then be optimized using personalized neuroimaging, physiological monitoring, and engagement of a specific brain state using pharmacological or psychological interventions. Finally, a specific stimulation modality or combination of modalities can be chosen after considering the advantages and tradeoffs of each. While there is preliminary literature to support different components of this framework, there are still many unanswered questions. This presents an opportunity for the future growth of research and clinical care in brain circuit therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stepwise development of a brain circuit therapeutic.

References

  1. Berrios GE. The origins of psychosurgery: shaw, Burckhardt and Moniz. Hist Psychiatry. 1997;8:61–81.

    Article  CAS  PubMed  Google Scholar 

  2. Caruso JP, Sheehan JP. Psychosurgery, ethics, and media: a history of Walter Freeman and the lobotomy. Neurosurg Focus. 2017;43:E6.

    Article  PubMed  Google Scholar 

  3. Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 1996;348:233–7.

    Article  CAS  PubMed  Google Scholar 

  4. Siddiqi SH, Taylor JJ, Horn A, Fox MD. Bringing human brain connectomics to clinical practice in psychiatry. Biol Psychiatry. 2022;93:386–387.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siddiqi SH, Kording KP, Parvizi J, Fox MD. Causal mapping of human brain function. Nat Rev Neurosci. 2022;23:361–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Isserles M, Tendler A, Roth Y, Bystritsky A, Blumberger DM, Ward H, et al. Deep transcranial magnetic stimulation combined with brief exposure for posttraumatic stress disorder: a prospective multisite randomized trial. Biol Psychiatry. 2021;90:721–8.

    Article  PubMed  Google Scholar 

  7. Etkin A. Addressing the causality gap in human psychiatric neuroscience. JAMA Psychiatry. 2018;75:3–4.

    Article  PubMed  Google Scholar 

  8. Siddiqi SH, Kandala S, Hacker CD, Bouchard H, Leuthardt EC, Corbetta M, et al. Precision functional MRI mapping reveals distinct connectivity patterns for depression associated with traumatic brain injury. Sci Transl Med. 2023;15:eabn0441.

    Article  PubMed  Google Scholar 

  9. Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, et al. Precision functional mapping of individual human brains. Neuron. 2017;95:791–807.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taylor JJ, Lin C, Talmasov D, Ferguson MA, Schaper FLWVJ, Jiang J, et al. A transdiagnostic network for psychiatric illness derived from atrophy and lesions. Nat Hum Behav. 2023;7:420–9.

    Article  PubMed  Google Scholar 

  12. Cash RFH, Müller VI, Fitzgerald PB, Eickhoff SB, Zalesky A. Altered brain activity in unipolar depression revisited using connectomics. Nat Ment Health. 2023;1:174–85.

    Article  Google Scholar 

  13. Taylor SF, Ho SS, Abagis T, Angstadt M, Maixner DF, Welsh RC, et al. Changes in brain connectivity during a sham-controlled, transcranial magnetic stimulation trial for depression. J Affect Disord. 2018;232:143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Teferi M, et al. Continuous theta-burst stimulation to the right dorsolateral prefrontal cortex may increase potentiated startle in healthy individuals. Biolog Psychiatry Global Open Sci. 2023;3:3.

  15. Gordon EM, Chauvin RJ, Van AN, Rajesh A, Nielsen A, Newbold DJ, et al. A somato-cognitive action network alternates with effector regions in motor cortex. Nature. 2023;617:351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamilton LS, Edwards E, Chang EF. A spatial map of onset and sustained responses to speech in the human superior temporal gyrus. Curr Biol. 2018;28:1860–71.e4.

    Article  CAS  PubMed  Google Scholar 

  17. Hamilton LS, Oganian Y, Hall J, Chang EF. Parallel and distributed encoding of speech across human auditory cortex. Cell. 2021;184:4626–4639.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siddiqi SH, Schaper F, Horn A, Hsu J, Padmanabhan JL, Brodtmann A, et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat Hum Behav. 2021;5:1707–16.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Herbsman T, Avery D, Ramsey D, Holtzheimer P, Wadjik C, Hardaway F, et al. More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response. Biol Psychiatry. 2009;66:509–15.

    Article  PubMed  Google Scholar 

  20. Eisenstein SA, Koller JM, Black KD, Campbell MC, Lugar HM, Ushe M, et al. Functional anatomy of subthalamic nucleus stimulation in Parkinson disease. Ann Neurol. 2014;76:279–95.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Duffley G, Anderson DN, Vorwerk J, Dorval AD, Butson CR. Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated. J Neural Eng. 2019;16:066024.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Opitz A, Fox MD, Craddock RC, Colcombe S, Milham MP. An integrated framework for targeting functional networks via transcranial magnetic stimulation. Neuroimage. 2016;127:86–96.

    Article  PubMed  Google Scholar 

  23. Siddiqi SH, Taylor SF, Cooke D, Pascual-Leone A, George MS, Fox MD. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Am J Psychiatry. 2020;177:435–46.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE, Chaturvedi A, et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2014;76:963–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Baldermann JC, Schüller T, Kohl S, Voon V, Li N, Hollunder B, et al. Connectomic deep brain stimulation for obsessive-compulsive disorder. Biol Psychiatry. 2021;90:678–88.

    Article  CAS  PubMed  Google Scholar 

  26. Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82:67–78.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990;249:1436–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lozano AM, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J, Hutchinson WD, et al. Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet. 1995;346:1383–7.

    Article  CAS  PubMed  Google Scholar 

  29. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–6.

    Article  CAS  PubMed  Google Scholar 

  30. Joutsa J, Corp DT, Fox MD. Lesion network mapping for symptom localization: recent developments and future directions. Curr Opin Neurol. 2022;35:453–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fox MD. Mapping symptoms to brain networks with the human connectome. N. Engl J Med. 2018;379:2237–45.

    Article  CAS  PubMed  Google Scholar 

  32. Siddiqi SH, Kletenik I, Anderson MC, Cavallari M, Chitnis T, Glanz BI, et al. Lesion network localization of depression in multiple sclerosis. Nat Ment Health. 2023;1:36–44.

    Article  Google Scholar 

  33. Joutsa J, Horn A, Hsu J, Fox MD. Localizing parkinsonism based on focal brain lesions. Brain. 2018;141:2445–56.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reich MM, Hsu J, Ferguson M, Schaper F, Joutsa J, Roothans J, et al. A brain network for deep brain stimulation induced cognitive decline in Parkinson’s disease. Brain. 2022;145:1410–21.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ganos C, Al-Fatly B, Fischer JF, Baldermann JC, Hennen C, Visser-Vandewalle V, et al. A neural network for tics: insights from causal brain lesions and deep brain stimulation. Brain. 2022;145:4385–97.

  36. Joutsa J, Moussawi K, Siddiqi SH, Abdolahi A, Drew W, Cohen AL, et al. Brain lesions disrupting addiction map to a common human brain circuit. Nat Med. 2022;28:1249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joutsa J, Shih LC, Horn A, Reich MM, Wu O, Rost NS, et al. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol. 2018;84:153–7.

    Article  PubMed  Google Scholar 

  38. Hollunder B, Rajamani N, Siddiqi SH, Finke C, Kühn AA, Mayberg HS, et al. Toward personalized medicine in connectomic deep brain stimulation. Prog Neurobiol. 2022;210:102211.

    Article  PubMed  Google Scholar 

  39. Gordon EM, Laumann TO, Adeyemo B, Petersen SE. Individual variability of the system-level organization of the human brain. Cereb Cortex. 2017;27:386–99.

    PubMed  Google Scholar 

  40. Cash RFH, Weigand A, Zalesky A, Siddiqi SH, Downar J, Fitzgerald PB, et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol Psychiatry. 2020;90:689–700.

    Article  PubMed  Google Scholar 

  41. Cash RFH, et al. Functional magnetic resonance imaging–guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry. 2020.

  42. Fox MD, Liu H, Pascual-Leone A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. Neuroimage. 2013;66:151–60.

    Article  PubMed  Google Scholar 

  43. Lynch CJ, Elbau IG, Ng TH, Wolk D, Zhu S, Ayaz A, et al. Automated optimization of TMS coil placement for personalized functional network engagement. Neuron. 2022;110:3263–77.e4.

    Article  CAS  PubMed  Google Scholar 

  44. Siddiqi SH, Trapp NT, Hacker CD, Laumann TO, Kandala S, Hong X, et al. Repetitive transcranial magnetic stimulation with resting-state network targeting for treatment-resistant depression in traumatic brain injury: a randomized, controlled, double-blinded pilot study. J Neurotrauma. 2019;36:1361–74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol psychiatry. 2018;23:843–9.

    Article  CAS  PubMed  Google Scholar 

  46. Eshel N, Keller CJ, Wu W, Jiang J, Mills-Finnerty C, Huemer J, et al. Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation. Neuropsychopharmacology. 2020;45:1018–25.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Caulfield KA, Brown JC. The problem and potential of tms’ infinite parameter space: a targeted review and road map forward. Front Psychiatry. 2022;13:867091.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hacker CD, Snyder AZ, Pahwa M, Corbetta M, Leuthardt EC. Frequency-specific electrophysiologic correlates of resting state fMRI networks. Neuroimage. 2017;149:446–57.

    Article  PubMed  Google Scholar 

  49. Fox KCR, Shi L, Baek S, Raccah O, Foster BL, Saha S, et al. Intrinsic network architecture predicts the effects elicited by intracranial electrical stimulation of the human brain. Nat Hum Behav. 2020;4:1039–52.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Siddiqi SH, Weigand A, Pascual-Leone A, Fox MD. Identification of personalized TMS targets based on subgenual cingulate connectivity: an independent replication. Biol Psychiatry. 2021;90:e55–e56.

    Article  PubMed  Google Scholar 

  51. Elbau IG, Lynch CJ, Downar J, Vila-Rodriguez F, Power JD, Solomonov N, et al. Functional connectivity mapping for rTMS target selection in depression. Am J Psychiatry. 2023;180:230–40.

    Article  PubMed  Google Scholar 

  52. Kong G, Wei L, Wang J, Zhu C, Tang Y. The therapeutic potential of personalized connectivity-guided transcranial magnetic stimulation target over group-average target for depression. Brain Stimul. 2022;15:1063–4.

    Article  PubMed  Google Scholar 

  53. Stöhrmann P, Godbersen GM, Reed MB, Unterholzner J, Klöbl M, Baldinger-Melich P, et al. Effects of bilateral sequential theta-burst stimulation on functional connectivity in treatment-resistant depression: first results. J Affect Disord. 2023;324:660–9.

  54. Overman D. Magnus medical receives FDA clearance for the SAINT neuromodulation system. AXIS Imaging News, 2022.

  55. Cash RFH, Hendrikse J, Fernando KB, Thompson S, Suo C, Fornito A, et al. Personalized brain stimulation of memory networks. Brain Stimul. 2022;15:1300–4.

    Article  PubMed  Google Scholar 

  56. Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, et al. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science. 2014;345:1054–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nilakantan AS, Mesulam MM, Weintraub S, Karp EL, VanHaerents S, Voss JL. Network-targeted stimulation engages neurobehavioral hallmarks of age-related memory decline. Neurology. 2019;92:e2349–e2354.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Koch G, Casula EP, Bonnì S, Borghi I, Assogna M, Minei M, et al. Precuneus magnetic stimulation for Alzheimer’s disease: a randomized, sham-controlled trial. Brain. 2022;145:3776–86.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou ZW, Williams LM, et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci. 2013;110:19944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grover P. Fundamental limits on source-localization accuracy of EEG-based neural sensing. in 2016 IEEE International Symposium on Information Theory (ISIT). 2016, 1794–8.

  61. Parvizi J, Kastner S. Promises and limitations of human intracranial electroencephalography. Nat Neurosci. 2018;21:474–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Scangos KW, Khambhati AN, Daly PM, Makhoul GS, Sugrue LP, Zamanian H, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat Med. 2021;27:1696–1700.

    Article  CAS  PubMed  Google Scholar 

  63. Oathes DJ, Balderston NL, Kording KP, DeLuisi JA, Perez GM, Medaglia JD, et al. Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. Wiley Interdiscip Rev: Cogn Sci. 2021;12:e1553.

    Article  PubMed  Google Scholar 

  64. Curtin A, Tong S, Sun J, Wang J, Onaral B, Ayaz H. A systematic review of integrated functional near-infrared spectroscopy (fNIRS) and transcranial magnetic stimulation (TMS) studies. Front Neurosci,. 2019;13:84.

    Article  PubMed  Google Scholar 

  65. Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol. 1998;15:333–43.

    Article  CAS  PubMed  Google Scholar 

  66. Dijkstra E, van Dijk H, Vila-Rodriguez F, Zwienenberg L, Rouwhorst R., Coetzee JP, et al. Transcranial Magnetic Stimulation-induced Heart-Brain-Coupling: Implications for site selection and frontal thresholding–preliminary findings. Biol Psychiatry Global Open Sci. 2023. Online ahead of print.

  67. Brown JC, Higgins ES, George MS. Synaptic plasticity 101: the story of the AMPA receptor for the brain stimulation practitioner. Neuromodulation. 2022;25:1289–98.

    Article  PubMed  Google Scholar 

  68. Brown JC, DeVries WH, Korte JE, Sahlem GL, Bonilha L, Short EB, et al. NMDA receptor partial agonist, d-cycloserine, enhances 10 Hz rTMS-induced motor plasticity, suggesting long-term potentiation (LTP) as underlying mechanism. Brain Stimulation. 2020;13:530–2.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cole J, Sohn MN, Harris AD, Bray SL, Patten SB, McGirr A. Efficacy of adjunctive D-Cycloserine to intermittent theta-burst stimulation for major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2022;79:1153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Palmieri MG, Iani C, Scalise A, Desiato MT, Loberti M, Telera S, et al. The effect of benzodiazepines and flumazenil on motor cortical excitability in the human brain. Brain Res. 1999;815:192–9.

    Article  CAS  PubMed  Google Scholar 

  71. Kaster TS, Downar J, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, et al. Trajectories of response to dorsolateral prefrontal rtms in major depression: a THREE-D Study. Am J Psychiatry. 2019;176:367–75.

    Article  PubMed  Google Scholar 

  72. Deppe M, Abdelnaim M, Hebel T, Kreuzer PM, Poeppl TB, Langguth B, et al. Concomitant lorazepam use and antidepressive efficacy of repetitive transcranial magnetic stimulation in a naturalistic setting. Eur Arch Psychiatry Clin Neurosci. 2021;271:61–67.

    Article  CAS  PubMed  Google Scholar 

  73. Hunter AM, Minzenberg MJ, Cook IA, Krantz DE, Levitt JG, Rotstein NM, et al. Concomitant medication use and clinical outcome of repetitive transcranial magnetic stimulation (rTMS) treatment of Major Depressive Disorder. Brain Behav. 2019;9:e01275.

    Article  PubMed  PubMed Central  Google Scholar 

  74. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004;115:1239–48.

    Article  PubMed  Google Scholar 

  75. Enomoto H, Terao Y, Kadowaki S, Nakamura K, Moriya A, Nakatani-Enomoto S, et al. Effects of L-Dopa and pramipexole on plasticity induced by QPS in human motor cortex. J Neural Transm (Vienna). 2015;122:1253–61.

    Article  CAS  PubMed  Google Scholar 

  76. Hanajima R, Tanaka N, Tsutsumi R, Shirota Y, Shimizu T, Terao Y, et al. Effect of caffeine on long-term potentiation-like effects induced by quadripulse transcranial magnetic stimulation. Exp Brain Res. 2019;237:647–51.

    Article  CAS  PubMed  Google Scholar 

  77. Vigne M, Kweon J, Sharma P, Greenberg BD, Carpenter LL, Brown JC. Chronic caffeine consumption curbs rTMS-induced plasticity. Front Psychiatry. 2023;14:1137681.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Frick A, Persson J, Bodén R. Habitual caffeine consumption moderates the antidepressant effect of dorsomedial intermittent theta-burst transcranial magnetic stimulation. J Psychopharmacol. 2021;35:1536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carmi L, Tendler A, Bystritsky A, Hollander E, Blumberger DM, Daskalakis J, et al. Efficacy and safety of deep transcranial magnetic stimulation for obsessive-compulsive disorder: a prospective multicenter randomized double-blind placebo-controlled trial. Am J Psychiatry. 2019;176:931–8.

    Article  PubMed  Google Scholar 

  80. Zangen A, Moshe H, Martinez D, Barnea-Ygael N, Vapnik T, Bystritsky A, et al. Repetitive transcranial magnetic stimulation for smoking cessation: a pivotal multicenter double‐blind randomized controlled trial. World Psychiatry. 2021;20:397–404.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Isserles M, Shalev AY, Roth Y, Peri T, Kutz I, Zlotnick E, et al. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder–a pilot study. Brain Stimul. 2013;6:377–83.

    Article  PubMed  Google Scholar 

  82. Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl J Med. 2018;379:1244–50.

    Article  PubMed  Google Scholar 

  83. Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71.

    Article  CAS  PubMed  Google Scholar 

  84. Downar J, Daskalakis ZJ. New targets for rTMS in depression: a review of convergent evidence. Brain Stimul. 2013;6:231–40.

    Article  PubMed  Google Scholar 

  85. Li Y, Qi L, Schaper F, Wu D, Friedrich M, Du J, et al. A vertigo network derived from human brain lesions and brain stimulation. Brain Commun. 2023;5:fcad071.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Joutsa J, Shih LC, Horn A, Reich MM, Wu O, Rost NS, et al. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol. 2018;84:153–7.

    Article  PubMed  Google Scholar 

  87. Schaper FL, Nordberg J, Cohen AL, Lin C, Hsu J, Horn A, et al. Mapping lesion-related epilepsy to a human brain network. JAMA Neurol. 2023. Online ahead of print.

  88. Siddiqi SH, Fox MD. Combining invasive and noninvasive brain stimulation. In Connectomic Deep Brain Stimulation. Academic Press; 2022, p. 505–23.

  89. Zanjani A, Zakzanis KK, Daskalakis ZJ, Chen R. Repetitive transcranial magnetic stimulation of the primary motor cortex in the treatment of motor signs in Parkinson’s disease: a quantitative review of the literature. Mov Disord. 2015;30:750–8.

    Article  PubMed  Google Scholar 

  90. Cusin C, Dougherty DD. Somatic therapies for treatment-resistant depression: ECT, TMS, VNS, DBS. Biol Mood Anxiety Disord. 2012;2:1–9.

    Article  Google Scholar 

  91. Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol. 2021;17:7–22.

    Article  PubMed  Google Scholar 

  92. Spix TA, Nanivadekar S, Toong N, Kaplow IM, Isett BR, Goksen Y, et al. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation. Science. 2021;374:201–6.

    Article  CAS  PubMed  Google Scholar 

  93. Cole EJ, Phillips AL, Bentzley BS, Stimpson KH, Nejad R, Barmak F, et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am J Psychiatry. 2022;179:132–41.

    Article  PubMed  Google Scholar 

  94. Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet. 2018;391:1683–92.

    Article  PubMed  Google Scholar 

  95. Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am J Psychiatry. 2020;177:716–26.

    Article  PubMed  Google Scholar 

  96. Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front Psychiatry. 2012;3:83.

    Article  PubMed  PubMed Central  Google Scholar 

  97. O’neill F, Sacco P, Bowden E, Asher R, Burnside G, Cox T, et al. Patient-delivered tDCS on chronic neuropathic pain in prior responders to TMS (a randomized controlled pilot study). J Pain Res. 2018;11:3117–28.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fischer DB, Fried PJ, Ruffini G, Ripolles O, Salvador R, Banus J, et al. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage. 2017;157:34–44.

    Article  CAS  PubMed  Google Scholar 

  99. Philip NS, Arulpragasam AR. Reaching for the unreachable: low intensity focused ultrasound for non-invasive deep brain stimulation. Neuropsychopharmacology. 2023;48:251–2.

  100. Fang J, Rong P, Hong Y, Fan Y, Liu J, Wang H, et al. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry. 2016;79:266–73.

    Article  PubMed  Google Scholar 

  101. Cassano P, Petrie SR, Hamblin MR, Henderson TA, Iosifescu DV. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics. 2016;3:031404.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, et al. Past, present, and future of deep brain stimulation: hardware, software, imaging, physiology and novel approaches. Front Neurol. 2022;13:825178.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ríos AS, Oxenford S, Neudorfer C, Butenko K, Li N, Rajamani N, et al. Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease. Nat Commun. 2022;13:7707.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Shirvalkar P, Veuthey TL, Dawes HE, Chang EF. Closed-loop deep brain stimulation for refractory chronic pain. Front Comput Neurosci. 2018;12:18.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tan H, Yamamoto EA, Elkholy MA, Raslan AM. Treating chronic pain with deep brain stimulation. Curr Pain Headache Rep. 2023;27:11–17.

    Article  PubMed  Google Scholar 

  106. Figee M, Riva-Posse P, Choi KS, Bederson L, Mayberg HS, Kopell BH. Deep brain stimulation for depression. Neurotherapeutics. 2022;19:1229–45.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bilge MT, Gosai AK, Widge AS. Deep brain stimulation in psychiatry: mechanisms, models, and next-generation therapies. Psychiatr Clin North Am. 2018;41:373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Grill WM, Snyder AN, Miocinovic S. Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport. 2004;15:1137–40.

    Article  PubMed  Google Scholar 

  109. Dorval AD, Russo GS, Hashimoto T, Xu W, Grill WM, Vitek JL. Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. J Neurophysiol. 2008;100:2807–18.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jarosiewicz B, Morrell M. The RNS System: brain-responsive neurostimulation for the treatment of epilepsy. Expert Rev Med Devices. 2021;18:129–38.

    Article  CAS  PubMed  Google Scholar 

  111. Arlotti M, Marceglia S, Foffani G, Volkmann J, Lozano AM, Moro E, et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018;90:e971–e976.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Shivacharan RS, Rolle CE, Barbosa D, Cunningham TN, Feng A, Johnson ND, et al. Pilot study of responsive nucleus accumbens deep brain stimulation for loss-of-control eating. Nat Med. 2022;28:1791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harel M, Perini I, Kämpe R, Alyagon U, Shalev H, Besser I, et al. Repetitive transcranial magnetic stimulation in alcohol dependence: a randomized, double-blind, sham-controlled proof-of-concept trial targeting the medial prefrontal and anterior cingulate cortices. Biol Psychiatry. 2022;91:1061–9.

    Article  PubMed  Google Scholar 

  114. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62:1208–16.

    Article  PubMed  Google Scholar 

  115. Compton WM, Guze SB. The neo-Kraepelinian revolution in psychiatric diagnosis. Eur Arch Psychiatry Clin Neurosci. 1995;245:196–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present analysis was supported by the Brain & Behavior Research Foundation (SHS), the Baszucki Family Foundation (SHS and MDF), the National Institute of Mental Health (grant no. K23MH121657 to SHS.; grant nos. R01MH113929 and R01MH115949 to MDF), and the National Institute of Neurological Disorders and Stroke (K23NS114178 to JDR). The funders were not directly involved in the conceptualization, design, analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SHS and MDF wrote the manuscript with input from all authors. SK illustrated the framework in Fig. 1. JDR wrote the section on invasive neuromodulation and provided consultation on the neurosurgical components of the manuscript.

Corresponding author

Correspondence to Shan H. Siddiqi.

Ethics declarations

Competing interests

SHS and MDF are scientific consultants for Magnus Medical. SHS is a clinical consultant for Acacia Mental Health, Kaizen Brain Center, and Boston Precision Neurotherapeutics. SHS and MDF have jointly received investigator-initiated research funding from Neuronetics. SHS has served as a speaker for Brainsway and PsychU.org (unbranded, sponsored by Otsuka). SHS and MDF independently own intellectual property involving the use of functional connectivity to target TMS. JDR has previously consulted for Medtronic, Neuropace, and Corlieve Therapeutics. SK has no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqi, S.H., Khosravani, S., Rolston, J.D. et al. The future of brain circuit-targeted therapeutics. Neuropsychopharmacol. 49, 179–188 (2024). https://doi.org/10.1038/s41386-023-01670-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01670-9

This article is cited by

Search

Quick links