Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Puerarin attenuates valproate-induced features of ASD in male mice via regulating Slc7a11-dependent ferroptosis

Abstract

Autism spectrum disorder (ASD) is a complicated, neurodevelopmental disorder characterized by social deficits and stereotyped behaviors. Accumulating evidence suggests that ferroptosis is involved in the development of ASD, but the underlying mechanism remains elusive. Puerarin has an anti-ferroptosis function. Here, we found that the administration of puerarin from P12 to P15 ameliorated the autism-associated behaviors in the VPA-exposed male mouse model of autism by inhibiting ferroptosis in neural stem cells of the hippocampus. We highlight the role of ferroptosis in the hippocampus neurogenesis and confirm that puerarin treatment inhibited iron overload, lipid peroxidation accumulation, and mitochondrial dysfunction, as well as enhanced the expression of ferroptosis inhibitory proteins, including Nrf2, GPX4, Slc7a11, and FTH1 in the hippocampus of VPA mouse model of autism. In addition, we confirmed that inhibition of xCT/Slc7a11-mediated ferroptosis occurring in the hippocampus is closely related to puerarin-exerted therapeutic effects. In conclusion, our study suggests that puerarin targets core symptoms and hippocampal neurogenesis reduction through ferroptosis inhibition, which might be a potential drug for autism intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PU could ameliorate VPA-induced autistic-like behaviors and cognitive impairment in male mice.
Fig. 2: PU treatment improves decreased neurogenesis caused by P14VPA treatment in the DG of the P15 hippocampus.
Fig. 3: The target xCT/Slc7a11 can be a bridge connecting hippocampus neurogenesis and ferroptosis in the effect of PU.
Fig. 4: Characteristics of ferroptosis in the P15 hippocampus of VPA-treated male mice were ameliorated by PU treatment.
Fig. 5: Erastin blocked the improved effect of PU in VPA-induced ASD phenotypes.

Similar content being viewed by others

References

  1. Lord C, Charman T, Havdahl A, Carbone P, Anagnostou E, Boyd B, et al. The Lancet Commission on the future of care and clinical research in autism. Lancet (Lond, Engl). 2022;399:271–334.

    Article  Google Scholar 

  2. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007;28:235–58.

    Article  PubMed  Google Scholar 

  3. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13:1161–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sharma SR, Gonda X, Tarazi FI. Autism Spectrum Disorder: Classification, diagnosis and therapy. Pharmacol Ther. 2018;190:91–104.

    Article  PubMed  CAS  Google Scholar 

  5. Liu G, Yu Q, Tan B, Ke X, Zhang C, Li H, et al. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome. Gut Microbes. 2022;14:2104089.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010;119:755–70.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang R, Cai Y, Xiao R, Zhong H, Li X, Guo L, et al. Human amniotic epithelial cell transplantation promotes neurogenesis and ameliorates social deficits in BTBR mice. Stem Cell Res Ther. 2019;10:153.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharma P, Mesci P, Carromeu C, McClatchy DR, Schiapparelli L, Yates JR 3rd, et al. Exosomes regulate neurogenesis and circuit assembly. Proc Natl Acad Sci USA. 2019;116:16086–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gioia R, Seri T, Diamanti T, Fimmanò S, Vitale M, Ahlenius H, et al. Adult hippocampal neurogenesis and social behavioural deficits in the R451C Neuroligin3 mouse model of autism are reverted by the antidepressant fluoxetine. J Neurochem. 2023;165:318–33.

  10. Zhong H, Xiao R, Ruan R, Liu H, Li X, Cai Y, et al. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism. Psychopharmacol (Berl). 2020;237:3539–52.

    Article  CAS  Google Scholar 

  11. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017;171:273–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy 2021;17:2054–81.

    Article  PubMed  CAS  Google Scholar 

  14. Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 2021;41:101947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer’s disease. J Neurochem. 2021;159:804–25.

    Article  PubMed  CAS  Google Scholar 

  16. Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 2021;93:312–21.

    Article  PubMed  CAS  Google Scholar 

  17. Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017;6:e371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wu H, Luan Y, Wang H, Zhang P, Liu S, Wang P, et al. Selenium inhibits ferroptosis and ameliorates autistic-like behaviors of BTBR mice by regulating the Nrf2/GPx4 pathway. Brain Res Bull. 2022;183:38–48.

    Article  PubMed  CAS  Google Scholar 

  19. Wu X, Li R, Hong Q, Chi X. Development and Validation of a Novel Diagnostic Model for Childhood Autism Spectrum Disorder Based on Ferroptosis-Related Genes. Front Psychiatry. 2022;13:886055.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jiang Z, Cui X, Qu P, Shang C, Xiang M, Wang J. Roles and mechanisms of puerarin on cardiovascular disease: a review. Biomed Pharmacother = Biomed Pharmacotherapie. 2022;147:112655.

    Article  CAS  Google Scholar 

  21. Yu CC, Du YJ, Li J, Li Y, Wang L, Kong LH, et al. Neuroprotective Mechanisms of Puerarin in Central Nervous System Diseases: Update. Aging Dis. 2022;13:1092–105.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou B, Zhang J, Chen Y, Liu Y, Tang X, Xia P, et al. Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling. Aging 2022;14:3617–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Xu B, Wang H, Chen Z. Puerarin Inhibits Ferroptosis and Inflammation of Lung Injury Caused by Sepsis in LPS Induced Lung Epithelial Cells. Front Pediatrics. 2021;9:706327.

    Article  Google Scholar 

  24. Huang Y, Wu H, Hu Y, Zhou C, Wu J, Wu Y, et al. Puerarin Attenuates Oxidative Stress and Ferroptosis via AMPK/PGC1α/Nrf2 Pathway after Subarachnoid Hemorrhage in Rats. Antioxid (Basel, Switz). 2022;11:1259.

    Article  CAS  Google Scholar 

  25. Löscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs. 2002;16:669–94.

    Article  PubMed  Google Scholar 

  26. Ornoy A, Becker M, Weinstein-Fudim L, Ergaz Z. S-Adenosine Methionine (SAMe) and Valproic Acid (VPA) as Epigenetic Modulators: Special Emphasis on their Interactions Affecting Nervous Tissue during Pregnancy. Int J Mol Sci. 2020;21:10.

    Article  Google Scholar 

  27. Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol. 2018;299:217–27.

    Article  PubMed  CAS  Google Scholar 

  28. Sharma AR, Batra G, Saini L, Sharma S, Mishra A, Singla R, et al. Valproic Acid and Propionic Acid Modulated Mechanical Pathways Associated with Autism Spectrum Disorder at Prenatal and Neonatal Exposure. CNS Neurol Disord Drug Targets. 2022;21:399–408.

    Article  PubMed  CAS  Google Scholar 

  29. Yang X, Li J, Zhou Y, Zhang N, Liu J. Effect of stigma maydis polysaccharide on the gut microbiota and transcriptome of VPA induced autism model rats. Front Microbiol. 2022;13:1009502.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vakili Shahrbabaki SS, Jonaidi H, Sheibani V, Bashiri H. Early postnatal handling alters social behavior, learning, and memory of pre- and postnatal VPA-induced rat models of autism in a context-based manner. Physiol Behav. 2022;249:113739.

    Article  PubMed  CAS  Google Scholar 

  31. Elesawy RO, El-Deeb OS, Eltokhy AK, Arakeep HM, Ali DA, Elkholy SS, et al. Postnatal baicalin ameliorates behavioral and neurochemical alterations in valproic acid-induced rodent model of autism: The possible implication of sirtuin-1/mitofusin-2/ Bcl-2 pathway. Biomed Pharmacother = Biomed Pharmacother. 2022;150:112960.

    Article  PubMed  CAS  Google Scholar 

  32. Luo T, Chen SS, Ruan Y, Chen HY, Chen YM, Li YM, et al. Downregulation of DDIT4 ameliorates abnormal behaviors in autism by inhibiting ferroptosis via the PI3K/Akt pathway. Biochem Biophys Res Commun. 2023;641:168–76.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao J, Xu B, Xiong Q, Feng Y, Du H. Erastin‑induced ferroptosis causes physiological and pathological changes in healthy tissues of mice. Mol Med Rep. 2021;24:713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Deacon RM. Housing, husbandry and handling of rodents for behavioral experiments. Nat Protocs 2006;1:936–46.

    Article  Google Scholar 

  35. McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 2008;7:152–63.

    Article  PubMed  CAS  Google Scholar 

  36. Deacon RM. Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc. 2006;1:122–4.

    Article  PubMed  CAS  Google Scholar 

  37. Cai Y, Tang X, Chen X, Li X, Wang Y, Bao X, et al. Liver X receptor β regulates the development of the dentate gyrus and autistic-like behavior in the mouse. Proc Natl Acad Sci USA. 2018;115:E2725–e33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19:773–7.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshizaki K, Asai M, Hara T. High-Fat Diet Enhances Working Memory in the Y-Maze Test in Male C57BL/6J Mice with Less Anxiety in the Elevated Plus Maze Test. Nutrients 2020;12:2036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Deacon RM. Assessing nest building in mice. Nat Protoc. 2006;1:1117–9.

    Article  PubMed  Google Scholar 

  41. Liu Z, Tan S, Zhou L, Chen L, Liu M, Wang W, et al. SCGN deficiency is a risk factor for autism spectrum disorder. Signal Transduct Target Ther. 2023;8:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xie R, Wang Z, Liu T, Xiao R, Lv K, Wu C, et al. AAV Delivery of shRNA Against TRPC6 in Mouse Hippocampus Impairs Cognitive Function. Front Cell Dev Biol. 2021;9:688655.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang Z, Xie R, Yang X, Yin H, Li X, Liu T, et al. Female mice lacking ERβ display excitatory/inhibitory synaptic imbalance to drive the pathogenesis of temporal lobe epilepsy. Theranostics 2021;11:6074–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, et al. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ. 2020;27:2635–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Xu Y, Li Y, Li J, Chen W. Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation. Redox Biol. 2022;53:102349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M, et al. Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol. 2022;289:115021.

    Article  PubMed  CAS  Google Scholar 

  48. Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK, et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods. 2015;12:51–4.

    Article  PubMed  CAS  Google Scholar 

  49. Qiao J, Zhao J, Chang S, Sun Q, Liu N, Dong J, et al. MicroRNA-153 improves the neurogenesis of neural stem cells and enhances the cognitive ability of aged mice through the notch signaling pathway. Cell Death Differ. 2020;27:808–25.

    Article  PubMed  CAS  Google Scholar 

  50. Zhao J, Chen Y, Xiong T, Han S, Li C, He Y, et al. Clustered Cobalt Nanodots Initiate Ferroptosis by Upregulating Heme Oxygenase 1 for Radiotherapy Sensitization. Small 2023;19:e2206415.

    Article  PubMed  Google Scholar 

  51. Yuan B, Peng Q, Cheng J, Wang M, Zhong J, Qi J, et al. Structure of the Ebola virus polymerase complex. Nature 2022;610:394–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ornoy A, Weinstein-Fudim L, Tfilin M, Ergaz Z, Yanai J, Szyf M, et al. S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice. Neurotoxicol Teratol. 2019;71:64–74.

    Article  PubMed  CAS  Google Scholar 

  53. Amiri A, Cho W, Zhou J, Birnbaum SG, Sinton CM, McKay RM, et al. Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci : Off J Soc Neurosci. 2012;32:5880–90.

    Article  CAS  Google Scholar 

  54. Joo Y, Xue Y, Wang Y, McDevitt RA, Sah N, Bossi S, et al. Topoisomerase 3β knockout mice show transcriptional and behavioural impairments associated with neurogenesis and synaptic plasticity. Nat Commun. 2020;11:3143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gobshtis N, Tfilin M, Wolfson M, Fraifeld VE, Turgeman G. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget 2017;8:17443–52.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sawada K, Kamiya S, Aoki I. The Proliferation of Dentate Gyrus Progenitors in the Ferret Hippocampus by Neonatal Exposure to Valproic Acid. Front Neurosci. 2021;15:736313.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cai Y, Zhong H, Li X, Xiao R, Wang L, Fan X. The Liver X Receptor Agonist TO901317 Ameliorates Behavioral Deficits in Two Mouse Models of Autism. Front Cell Neurosci. 2019;13:213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol. 2020;67:74–82.

    Article  PubMed  CAS  Google Scholar 

  59. Johnson K, Barragan J, Bashiruddin S, Smith CJ, Tyrrell C, Parsons MJ, et al. Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord. Glia 2016;64:1170–89.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Seib DR, Espinueva DF, Princz-Lebel O, Chahley E, Stevenson J, O’Leary TP, et al. Hippocampal neurogenesis promotes preference for future rewards. Mol Psychiatry. 2021;26:6317–35.

    Article  PubMed  Google Scholar 

  61. Procaccini C, Garavelli S, Carbone F, Di Silvestre D, La Rocca C, Greco D, et al. Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity 2021;54:1543–60.e6.

    Article  PubMed  CAS  Google Scholar 

  62. Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer Discov. 2019;9:1673–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Liang C, Zhang X, Yang M, Dong X. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Adv Mater (Deerfield Beach, Fla). 2019;31:e1904197.

    Article  Google Scholar 

  64. Gao J, Zhou Q, Wu D, Chen L. Mitochondrial iron metabolism and its role in diseases. Clin Chim Acta; Int J Clin Chem. 2021;513:6–12.

    Article  CAS  Google Scholar 

  65. Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(). Cell Death Differ. 2020;27:662–75.

    Article  PubMed  CAS  Google Scholar 

  66. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12:599–620.

    Article  PubMed  CAS  Google Scholar 

  67. Murphy TH, Schnaar RL, Coyle JT. Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J : Off Publ Fed Am Soc Exp Biol. 1990;4:1624–33.

    Article  CAS  Google Scholar 

  68. Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH. Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci : Off J Soc Neurosci. 2006;26:10514–23.

    Article  CAS  Google Scholar 

  69. Zhang Q, Wu H, Zou M, Li L, Li Q, Sun C, et al. Folic acid improves abnormal behavior via mitigation of oxidative stress, inflammation, and ferroptosis in the BTBR T+ tf/J mouse model of autism.J NutrBiochem. 2019;71:98–109.

    CAS  Google Scholar 

  70. Sims B, Clarke M, Francillion L, Kindred E, Hopkins ES, Sontheimer H. Hypoxic preconditioning involves system Xc- regulation in mouse neural stem cells. Stem Cell Res. 2012;8:285–91.

    Article  PubMed  CAS  Google Scholar 

  71. Liu B, Zhao C, Li H, Chen X, Ding Y, Xu S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun. 2018;497:233–40.

    Article  PubMed  CAS  Google Scholar 

  72. Liu RR, Brown CE, Murphy TH. Differential regulation of cell proliferation in neurogenic zones in mice lacking cystine transport by xCT. Biochem Biophys Res Commun. 2007;364:528–33.

    Article  PubMed  CAS  Google Scholar 

  73. Zhang Z, Guo M, Li Y, Shen M, Kong D, Shao J, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy 2020;16:1482–505.

    Article  PubMed  CAS  Google Scholar 

  74. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen Q, Cai Y, Zhu X, Wang J, Gao F, Yang M, et al. Edaravone Dexborneol Treatment Attenuates Neuronal Apoptosis and Improves Neurological Function by Suppressing 4-HNE-Associated Oxidative Stress After Subarachnoid Hemorrhage. Front Pharm. 2022;13:848529.

    Article  CAS  Google Scholar 

  76. Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol. 2020;30:478–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Conrad M, Pratt DA. The chemical basis of ferroptosis. Nat Chem Biol. 2019;15:1137–47.

    Article  PubMed  CAS  Google Scholar 

  78. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med. 2009;30:1–12.

    Article  CAS  Google Scholar 

  79. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 2018;172:409–22.e21.

    Article  PubMed  CAS  Google Scholar 

  80. Sun Y, Zheng Y, Wang C, Liu Y. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018;9:753.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Song X, Long D. Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Front Neurosci. 2020;14:267.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Cheng X, Wang Y, Liu L, Lv C, Liu C, Xu J. SLC7A11, a Potential Therapeutic Target Through Induced Ferroptosis in Colon Adenocarcinoma. Front Mol Biosci. 2022;9:889688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Burdo J, Dargusch R, Schubert D. Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and duodenum. J Histochem Cytochem: Off J Histochem Soc. 2006;54:549–57.

    Article  CAS  Google Scholar 

  85. Ku CC, Wuputra K, Kato K, Pan JB, Li CP, Tsai MH, et al. Deletion of Jdp2 enhances Slc7a11 expression in Atoh-1 positive cerebellum granule cell progenitors in vivo. Stem Cell Res Ther. 2021;12:369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chen W, Jiang L, Hu Y, Tang N, Liang N, Li XF, et al. Ferritin reduction is essential for cerebral ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis. Brain Res. 2021;1752:147216.

    Article  PubMed  CAS  Google Scholar 

  87. Asanuma M, Miyazaki I. Glutathione and Related Molecules in Parkinsonism. Int J Mol Sci. 2021;22:8689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Yuan Y, Zhai Y, Chen J, Xu X, Wang H. Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules 2021;11:923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wang X, Chen Y, Wang X, Tian H, Wang Y, Jin J, et al. Stem Cell Factor SOX2 Confers Ferroptosis Resistance in Lung Cancer via Upregulation of SLC7A11. Cancer Res. 2021;81:5217–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

Funding

This study was supported by the National Nature Science Foundation of China (No. 82071544); National Key R&D Program of China (2021YFA1101203) ; Chongqing Technology Innovation and Application s Development Special key Project (cstc2019jscx-dxwtBX0010); Innovation Team of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University(2022-CXTD-05); Si chuan Science and Technology Program(grantnumber2019YJ0694) and Student’s Platform for Innovation and Entrepreneurship Training Program (202290031048).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, PJ, XF, and LZ; methodology, PJ and LZ; validation, XF, PJ, and LZ; formal analysis, LZ, XF, ZW, TL, ZW. HG, YL, and LZ; data curation, YT, XF, and LZ; writing-original draft preparation, PJ and LZ; writing-review and editing, XF, HY, and HL; supervision, XF, SL, and DL; project administration, PJ, XF. All authors have read and agreed to the published version of the paper.

Corresponding authors

Correspondence to Huiling Liao or Xiaotang Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Zhou, L., Zhao, L. et al. Puerarin attenuates valproate-induced features of ASD in male mice via regulating Slc7a11-dependent ferroptosis. Neuropsychopharmacol. 49, 497–507 (2024). https://doi.org/10.1038/s41386-023-01659-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01659-4

Search

Quick links