Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics, and plasticity

Abstract

Deep brain stimulation (DBS) is an invasive approach to precise modulation of psychiatrically relevant circuits. Although it has impressive results in open-label psychiatric trials, DBS has also struggled to scale to and pass through multi-center randomized trials. This contrasts with Parkinson disease, where DBS is an established therapy treating thousands of patients annually. The core difference between these clinical applications is the difficulty of proving target engagement, and of leveraging the wide range of possible settings (parameters) that can be programmed in a given patient’s DBS. In Parkinson’s, patients’ symptoms change rapidly and visibly when the stimulator is tuned to the correct parameters. In psychiatry, those same changes take days to weeks, limiting a clinician’s ability to explore parameter space and identify patient-specific optimal settings. I review new approaches to psychiatric target engagement, with an emphasis on major depressive disorder (MDD). Specifically, I argue that better engagement may come by focusing on the root causes of psychiatric illness: dysfunction in specific, measurable cognitive functions and in the connectivity and synchrony of distributed brain circuits. I overview recent progress in both those domains, and how it may relate to other technologies discussed in companion articles in this issue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example tracts/tract combinations correlated with DBS response.
Fig. 2: Limbic network mapping for closed loop DBS optimization, adapted from [38].
Fig. 3: Neurostimulation approaches to evoke targeted neuroplasticity.

Similar content being viewed by others

References

  1. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005;45:651–60.

    Article  CAS  PubMed  Google Scholar 

  2. Greenberg B, Gabriels L, Malone D, Rezai A, Friehs G, Okun M, et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry. 2010;15:64–79.

    Article  CAS  PubMed  Google Scholar 

  3. Malone DA, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75.

    Article  PubMed  Google Scholar 

  4. Holtzheimer PE, Husain MM, Lisanby SH, Taylor SF, Whitworth LA, McClintock S, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4:839–49.

    Article  PubMed  Google Scholar 

  5. Dougherty DD, Rezai AR, Carpenter LL, Howland RH, Bhati MT, O’Reardon JP, et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol Psychiatry. 2015;78:240–8.

    Article  PubMed  Google Scholar 

  6. Menchón JM, Real E, Alonso P, Aparicio MA, Segalas C, Plans G, et al. A prospective international multi-center study on safety and efficacy of deep brain stimulation for resistant obsessive-compulsive disorder. Mol Psychiatry. 2021;26:1234–47.

    Article  PubMed  Google Scholar 

  7. Denys D, Graat I, Mocking R, de Koning P, Vulink N, Figee M, et al. Efficacy of deep brain stimulation of the ventral anterior limb of the internal capsule for refractory obsessive-compulsive disorder: a clinical cohort of 70 patients. AJP. 2020;177:265–71. appi.ajp.2019.19060656

    Article  Google Scholar 

  8. Dougherty DD, Brennan B, Stewart SE, Wilhelm S, Widge AS, Rauch SL. Neuroscientifically informed formulation and treatment planning for patients with obsessive-compulsive disorder: a review. JAMA Psychiatry. 2018;75:1081–7.

    Article  PubMed  Google Scholar 

  9. Widge AS. Closed-Loop Deep Brain Stimulation for Psychiatric Disorders. Harv Rev Psychiatry. 2023;31:162.

    Article  PubMed  Google Scholar 

  10. Holtzheimer PE, Kelley ME, Gross RE, Filkowski MM, Garlow SJ, Barrocas A, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch Gen Psychiatry. 2012;69:150–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bergfeld IO, Mantione M, Hoogendorn ML, Ruhé HG, Notten P, van Laarhoven J, et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: A randomized clinical trial. JAMA Psychiatry. 2016;73:456–64.

    Article  PubMed  Google Scholar 

  12. Malekmohammadi M, Mustakos R, Sheth S, Pouratian N, McIntyre CC, Bijanki KR, et al. Automated optimization of deep brain stimulation parameters for modulating neuroimaging-based targets. J Neural Eng. 2022;19:046014.

    Article  Google Scholar 

  13. Peña E, Zhang S, Patriat R, Aman JE, Vitek JL, Harel N, et al. Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J Neural Eng. 2018;15:066020.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Slopsema JP, Peña E, Patriat R, Lehto LJ, Gröhn O, Mangia S, et al. Clinical deep brain stimulation strategies for orientation-selective pathway activation. J Neural Eng. 2018;15:056029.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Widge AS, Dougherty DD. Managing patients with psychiatric disorders with deep brain stimulation. In: Marks Jr. WJ, Ostrem JL, editors. Deep Brain Stimulation Management, 3rd ed. Cambridge: New York: Cambridge University Press; 2022. p. 198–214.

  16. van Westen M, Rietveld E, Bergfeld IO, Koning Pde, Vullink N, Ooms P, et al. Optimizing deep brain stimulation parameters in obsessive–compulsive disorder. Neuromodulation: Technology at the Neural. Interface. 2021;24:307–15.

    Google Scholar 

  17. Okun MS, Mann G, Foote KD, Shapira NA, Bowers D, Springer U, et al. Deep brain stimulation in the internal capsule and nucleus accumbens region: responses observed during active and sham programming. J Neurol Neurosurg Psychiatry. 2007;78:310–4.

    Article  PubMed  Google Scholar 

  18. Choi K, Riva-Posse P, Gross RE, Mayberg HS. Mapping the “depression switch” during intraoperative testing of subcallosal cingulate deep brain stimulation. JAMA Neurol. 2015;72:1252–60.

  19. Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS. Ketamine: A Paradigm Shift for Depression Research and Treatment. Neuron 2019;101:774–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zaki N, Chen L (Nancy), Lane R, Doherty T, Drevets WC, et al. Long-term safety and maintenance of response with esketamine nasal spray in participants with treatment-resistant depression: interim results of the SUSTAIN-3 study. Neuropsychopharmacology. 2023;48:1225–33.

  21. van Westen M, Rietveld E, Denys D. Effective deep brain stimulation for obsessive-compulsive disorder requires clinical expertise. Front Psychol. 2019;10:2294.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23:843–9.

    Article  CAS  PubMed  Google Scholar 

  23. Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE, Chaturvedi A, et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2014;76:963–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sullivan CRP, Olsen S, Widge AS. Deep brain stimulation for psychiatric disorders: From focal brain targets to cognitive networks. NeuroImage 2021;225:117515.

    Article  PubMed  Google Scholar 

  25. Widge AS, Deckersbach T, Eskandar EN, Dougherty DD. Deep brain stimulation for treatment-resistant psychiatric illnesses: what has gone wrong and what should we do next? Biol Psychiatry. 2016;79:e9–e10.

    Article  PubMed  Google Scholar 

  26. Widge AS, Malone DAJ, Dougherty DD. Closing the loop on deep brain stimulation for treatment-resistant depression. Front Neurosci. 2018;12:175.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cuthbert BN. Research Domain Criteria (RDoC): Progress and Potential. Curr Dir Psychol Sci. 2022;31:107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17:1174–9.

    Article  CAS  PubMed  Google Scholar 

  29. Widge AS, Miller EK. Next-generation clinical brain stimulation: targeting cognition and networks through neural oscillations. JAMA Psychiatry. 2019;76:671–2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bergey GK, Morrell MJ, Mizrahi EM, Goldman A, King-Stephens D, Nair D, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 2015;84:810–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Waters AC, Veerakumar A, Choi KS, Howell B, Tiruvadi V, Bijanki KR, et al. Test–retest reliability of a stimulation-locked evoked response to deep brain stimulation in subcallosal cingulate for treatment resistant depression. Hum Brain Mapp. 2018;39:4844–56.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Veerakumar A, Tiruvadi V, Howell B, Waters AC, Crowell AL, Voytek B, et al. Field potential 1/f activity in the subcallosal cingulate region as a candidate signal for monitoring deep brain stimulation for treatment-resistant depression. J Neurophysiol. 2019;122:1023–35.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Olsen S, Basu I, Bilge MT, Kanabar A, Boggess MJ, Rockhill AP, et al. Case report of dual-site neurostimulation and chronic recording of cortico-striatal circuitry in a patient with treatment refractory obsessive compulsive disorder. Front Hum Neurosci. 2020;14:569973.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Scangos KW, Makhoul GS, Sugrue LP, Chang EF, Krystal AD. State-dependent responses to intracranial brain stimulation in a patient with depression. Nat Med. 2021;27:229–31.

  35. Scangos KW, Khambhati AN, Daly PM, Makhoul GS, Sugrue LP, Zamanian H, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat Med. 2021;27:1696–1700.

  36. Baldermann JC, Schüller T, Kohl S, Voon V, Li N, Hollunder B, et al. Connectomic deep brain stimulation for obsessive-compulsive disorder. Biol Psychiatry. 2021. 19 July 2021. https://doi.org/10.1016/j.biopsych.2021.07.010.

  37. Gadot R, Li N, Shofty B, Avendano-Ortega M, McKay S, Bijanki KR, et al. Tractography-Based Modeling Explains Treatment Outcomes in Patients Undergoing Deep Brain Stimulation for Obsessive Compulsive Disorder. Biol Psychiatry. 2023. 31 January 2023. https://doi.org/10.1016/j.biopsych.2023.01.017.

  38. Sheth SA, Bijanki KR, Metzger B, Allawala A, Pirtle V, Adkinson JA, et al. Deep brain stimulation for depression informed by intracranial recordings. Biol Psychiatry. 2021. 22 November 2021. https://doi.org/10.1016/j.biopsych.2021.11.007.

  39. Allawala A, Bijanki KR, Goodman W, Cohn JF, Viswanathan A, Yoshor D, et al. A Novel Framework for Network-Targeted Neuropsychiatric Deep Brain Stimulation. Neurosurgery. 2021. 29 April 2021. https://doi.org/10.1093/neuros/nyab112.

  40. Ramasubbu R, Clark DL, Golding S, Dobson KS, Mackie A, Haffenden A, et al. Long versus short pulse width subcallosal cingulate stimulation for treatment-resistant depression: a randomised, double-blind, crossover trial. Lancet Psychiatry. 2020;7:29–40.

    Article  PubMed  Google Scholar 

  41. Widge AS, Zhang F, Gosai A, Papadimitrou G, Wilson-Braun P, Tsintou M, et al. Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive-compulsive disorder. Neuropsychopharmacology 2022;47:965–72.

    Article  PubMed  Google Scholar 

  42. Graat I, Mocking RJT, Liebrand LC, van den Munckhof P, Bot M, Schuurman PR, et al. Tractography-based versus anatomical landmark-based targeting in vALIC deep brain stimulation for refractory obsessive-compulsive disorder. Mol Psychiatry. 2022:1–7.

  43. Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature 2022;603:654–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. PNAS 2016;113:7900–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bullock DN, Hayday EA, Grier MD, Tang W, Pestilli F, Heilbronner SR. A taxonomy of the brain’s white matter: twenty-one major tracts for the 21st century. Cereb Cortex. 2022;32:4524–48.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grier MD, Zimmermann J, Heilbronner SR. Estimating brain connectivity with diffusion-weighted MRI: Promise and peril. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:846–54.

    PubMed  PubMed Central  Google Scholar 

  47. Haber SN, Tang W, Choi EY, Yendiki A, Liu H, Jbabdi S, et al. Circuits, networks, and neuropsychiatric disease: transitioning from anatomy to imaging. Biol Psychiatry. 2020;87:318–27.

    Article  CAS  PubMed  Google Scholar 

  48. Smith EH, Horga G, Yates MJ, Mikell CB, Banks GP, Pathak YJ, et al. Widespread temporal coding of cognitive control in the human prefrontal cortex. Nat Neurosci. 2019;22:1883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Basu I, Yousefi A, Crocker B, Zelmann R, Paulk AC, Peled N, et al. Closed-loop enhancement and neural decoding of cognitive control in humans. Nat Biomed Eng. 2021:s41551-021-00804-y.

  50. Helfrich RF, Knight RT. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn Sci. 2016;20:916–30.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ezzyat Y, Wanda PA, Levy DF, Kadel A, Aka A, Pedisich I, et al. Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat Commun. 2018;9:365.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sani OG, Yang Y, Lee MB, Dawes HE, Chang EF, Shanechi MM. Mood variations decoded from multi-site intracranial human brain activity. Nat Biotechnol. 2018;36:954–61.

    Article  CAS  PubMed  Google Scholar 

  53. Regier DA, Narrow WE, Clarke DE, Kraemer HC, Kuramoto SJ, Kuhl EA, et al. DSM-5 field trials in the United States and Canada, part II: test-retest reliability of selected categorical diagnoses. AJP. 2013;170:59–70.

    Article  Google Scholar 

  54. Widge AS, Bilge MT, Montana R, Chang W, Rodriguez CI, Deckersbach T, et al. Electroencephalographic biomarkers for treatment response prediction in major depressive illness: a meta-analysis. Am J Psychiatry. 2019;176:44–56.

    Article  PubMed  Google Scholar 

  55. Zeier Z, Carpenter LL, Kalin NH, Rodriguez CI, McDonald WM, Widge AS, et al. Clinical implementation of pharmacogenetic decision support tools for antidepressant drug prescribing. Am J Psychiatry. 2018;175:873–86.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Testo AA, Garnaat SL, Corse AK, McLaughlin N, Greenberg BD, Deckersbach T, et al. A case of non-affective psychosis followed by extended response to non-stimulation in deep brain stimulation for obsessive-compulsive disorder. Brain Stimulation: Basic, Transl, Clin Res Neuromodulation. 2020;13:1317–9.

    Article  Google Scholar 

  57. Luyten L, Hendrickx S, Raymaekers S, Gabriëls L, Nuttin B. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol Psychiatry. 2016;21:1272–80.

    Article  CAS  PubMed  Google Scholar 

  58. Widge AS, Zorowitz S, Basu I, Paulk AC, Cash SS, Eskandar EN, et al. Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nat Commun. 2019;10:1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McCracken CB, Grace AA. High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci. 2007;27:12601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dunner DL, Aaronson ST, Sackeim HA, Janicak PG, Carpenter LL, Boyadjis T, et al. A multisite, naturalistic, observational study of transcranial magnetic stimulation for patients with pharmacoresistant major depressive disorder: durability of benefit over a 1-year follow-up period. J Clin Psychiatry. 2014;75:1394–401.

    Article  PubMed  Google Scholar 

  61. Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, et al. Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. Am J Psychiatry. 2020;177:716–26.

    Article  PubMed  Google Scholar 

  62. Redish AD, Kepecs A, Anderson LM, Calvin OL, Grissom NM, Haynos AF, et al. Computational validity: using computation to translate behaviours across species. Philos Trans R Soc. B 2022;377:20200525.

    Article  Google Scholar 

  63. Paulus MP, Huys QJM, Maia TV. A roadmap for the development of applied computational psychiatry. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2016;1:386–92.

    PubMed  Google Scholar 

  64. Huys QJM. Advancing clinical improvements for patients using the theory-driven and data-driven branches of computational psychiatry. JAMA Psychiatry. 2018;75:225–6.

    Article  PubMed  Google Scholar 

  65. Sanislow CA, Ferrante M, Pacheco J, Rudorfer MV, Morris SE. Advancing translational research using NIMH research domain criteria and computational methods. Neuron 2019;101:779–82.

    Article  CAS  PubMed  Google Scholar 

  66. Redish A, Gordon J, editors. Computational Psychiatry. The MIT Press; 2016.

  67. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Durstewitz D, Huys QJM, Koppe G. Psychiatric illnesses as disorders of network dynamics. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2021;6:865–76.

    PubMed  Google Scholar 

  69. Gordon JA. On being a circuit psychiatrist. Nat Neurosci. 2016;19:1385–6.

    Article  CAS  PubMed  Google Scholar 

  70. Insel TR. Faulty Circuits. Sci Am. 2010;302:44–51.

    Article  PubMed  Google Scholar 

  71. Haber SN, Yendiki A, Jbabdi S. Four deep brain stimulation targets for obsessive-compulsive disorder: Are they different? Biol Psychiatry. 2021;90:667–77.

  72. Dembek TA, Reker P, Visser‐Vandewalle V, Wirths J, Treuer H, Klehr M, et al. Directional DBS increases side-effect thresholds—A prospective, double-blind trial. Mov Disord. 2017;32:1380–8.

    Article  PubMed  Google Scholar 

  73. Cagnan H, Denison T, McIntyre C, Brown P. Emerging technologies for improved deep brain stimulation. Nat Biotechnol. 2019;37:1024–33.

  74. Grzenda A, Kraguljac NV, McDonald WM, Nemeroff CB, Torous J, Alpert JE, et al. Evaluating the machine learning literature: a primer and user’s guide for psychiatrists. Am J Psychiatry. 2021;178:715–29.

    Article  PubMed  Google Scholar 

  75. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.

    Article  CAS  PubMed  Google Scholar 

  76. Dinga R, Schmaal L, Penninx BWJH, van Tol MJ, Veltman DJ, van Velzen L, et al. Evaluating the evidence for biotypes of depression: Methodological replication and extension of Drysdale et al. (2017). NeuroImage: Clin 2019;22:101796.

    Article  PubMed  Google Scholar 

  77. Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 2013;83:550–8.

    Article  PubMed  Google Scholar 

  78. Ball TM, Goldstein-Piekarski AN, Gatt JM, Williams LM. Quantifying person-level brain network functioning to facilitate clinical translation. Transl Psychiatry. 2017;7:e1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, et al. Precision Functional Mapping of Individual Human Brains. Neuron 2017;95:791–807.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goldstein-Piekarski AN, Ball TM, Samara Z, Staveland BR, Keller AS, Fleming SL, et al. Mapping neural circuit biotypes to symptoms and behavioral dimensions of depression and anxiety. Biol Psychiatry. 2022;91:561–71.

    Article  PubMed  Google Scholar 

  81. Voon V, Reiter A, Sebold M, Groman S. Model-based control in dimensional psychiatry. Biol Psychiatry. 2017;82:391–400.

    Article  PubMed  Google Scholar 

  82. Rutledge RB, Skandali N, Dayan P, Dolan RJ. A computational and neural model of momentary subjective well-being. PNAS 2014;111:12252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cooper JA, Arulpragasam AR, Treadway MT. Anhedonia in depression: biological mechanisms and computational models. Curr Opin Behav Sci. 2018;22:128–35.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Grisanzio KA, Goldstein-Piekarski AN, Wang MY, Ahmed APR, Samara Z, Williams LM. Transdiagnostic symptom clusters and associations with brain, behavior, and daily function in mood, anxiety, and trauma disorders. JAMA Psychiatry. 2017;75:201–9.

    Article  PubMed Central  Google Scholar 

  85. Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela J-P. Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology 2018;43:1660–6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Harvey PD, Depp CA, Rizzo AA, Strauss GP, Spelber D, Carpenter LL, et al. Technology and mental health: state of the art for assessment and treatment. AJP. 2022;179:897–914.

  87. Xia CH, Barnett I, Tapera TM, Adebimpe A, Baker JT, Bassett DS, et al. Mobile footprinting: linking individual distinctiveness in mobility patterns to mood, sleep, and brain functional connectivity. Neuropsychopharmacol. 2022;47:1662–71.

  88. Gardner J. A history of deep brain stimulation: Technological innovation and the role of clinical assessment tools. Soc Stud Sci. 2013;43:707–28.

    Article  PubMed Central  Google Scholar 

  89. Coffey RJ, Lozano AM. Neurostimulation for chronic noncancer pain: an evaluation of the clinical evidence and recommendations for future trial designs. J Neurosurg. 2006;105:175–89.

    Article  PubMed  Google Scholar 

  90. Vitek JL, Johnson LA. Understanding Parkinson’s disease and deep brain stimulation: Role of monkey models. Proc Natl Acad Sci USA. 2019;116:26259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang J, Nebeck S, Muralidharan A, Johnson MD, Vitek JL, Baker KB. Coordinated reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine non-human primate model of Parkinsonism. Brain Stimulation. 2016;9:609–17.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Spix TA, Nanivadekar S, Toong N, Kaplow IM, Isett BR, Goksen Y, et al. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation. Science 2021;374:201–6.

    Article  CAS  PubMed  Google Scholar 

  93. Monteggia LM, Heimer H, Nestler EJ. Meeting Report: Can We Make Animal Models of Human Mental Illness? Biol Psychiatry. 2018;84:542–5.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN. Circuit based cortico-striatal homologies between rat and primate. Biol Psychiatry. 2016;80:509–21.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Widge AS, Heilbronner SR, Hayden BY. Prefrontal cortex and cognitive control: new insights from human electrophysiology. F1000Res. 2019;8:1696.

    Article  Google Scholar 

  96. Creed M. Current and emerging neuromodulation therapies for addiction: insight from pre-clinical studies. Curr Opin Neurobiol. 2018;49:168–74.

    Article  CAS  PubMed  Google Scholar 

  97. Kravitz AV, Tomasi D, LeBlanc KH, Baler R, Volkow ND, Bonci A, et al. Cortico-striatal circuits: Novel therapeutic targets for substance use disorders. Brain Res. 2015;1628:186–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci. 2018;19:535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Langevin J-P, Koek RJ, Schwartz HN, Chen JWY, Sultzer DL, Mandelkern MA, et al. Deep brain stimulation of the basolateral amygdala for treatment-refractory posttraumatic stress disorder. Biol Psychiatry. 2016;79:e82–e84.

    Article  PubMed  Google Scholar 

  100. Luigjes J, Brink Wvanden, Feenstra M, Munckhof Pvanden, Schuurman PR, Schippers R, et al. Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry. 2012;17:572–83.

    Article  CAS  PubMed  Google Scholar 

  101. Ball TM, Gunaydin LA. Measuring maladaptive avoidance: from animal models to clinical anxiety. Neuropsychopharmacol. 2022;47:978–86.

    Article  Google Scholar 

  102. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.

  103. Diehl MM, Bravo-Rivera C, Quirk GJ. The study of active avoidance: A platform for discussion. Neurosci Biobehav Rev. 2019;107:229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review. Neuron 2018;98:886–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. AJP. 2017;174:676–85.

    Article  Google Scholar 

  106. Gruner P, Pittenger C. Cognitive inflexibility in Obsessive-Compulsive Disorder. Neuroscience 2017;345:243–55.

    Article  CAS  PubMed  Google Scholar 

  107. Yang Z, Oathes DJ, Linn KA, Bruce SE, Satterthwaite TD, Cook PA, et al. Cognitive behavioral therapy is associated with enhanced cognitive control network activity in major depression and posttraumatic stress disorder. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2018;3:311–9.

    PubMed  Google Scholar 

  108. Cavanagh JF, Shackman AJ. Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. J Physiol-Paris. 2015;109:3–15.

    Article  PubMed  Google Scholar 

  109. Robbins TW, Vaghi MM, Banca P. Obsessive-compulsive disorder: puzzles and prospects. Neuron 2019;102:27–47.

    Article  CAS  PubMed  Google Scholar 

  110. Rodman AM, Jenness JL, Weissman DG, Pine DS, McLaughlin KA. Neurobiological markers of resilience to depression and anxiety following childhood maltreatment: The role of neural circuits supporting the cognitive control of emotion. Biol Psychiatry. 2019;86:464–73.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Farchione TJ, Fairholme CP, Ellard KK, Boisseau CL, Thompson-Hollands J, Carl JR, et al. Unified protocol for transdiagnostic treatment of emotional disorders: a randomized controlled trial. Behav Ther. 2012;43:666–78.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ellard KK, Fairholme CP, Boisseau CL, Farchione TJ, Barlow DH. Unified Protocol for the Transdiagnostic Treatment of Emotional Disorders: Protocol development and initial outcome data. Cogn Behav Pract. 2010;17:88–101.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Foa EB, McLean CP. The efficacy of exposure therapy for anxiety-related disorders and its underlying mechanisms: the case of OCD and PTSD. Annu Rev Clin Psychol. 2016;12:1–28.

    Article  PubMed  Google Scholar 

  114. Foa EB, McLean CP, Zang Y, Rosenfield D, Yadin E, Yarvis JS, et al. Effect of Prolonged Exposure Therapy Delivered Over 2 Weeks vs 8 Weeks vs Present-Centered Therapy on PTSD Symptom Severity in Military Personnel: A Randomized Clinical Trial. JAMA 2018;319:354–64.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Abramowitz JS, Deacon BJ, Whiteside SPH. Exposure Therapy for Anxiety: Principles and Practice. Second edition. New York: The Guilford Press; 2019.

  116. de Haan S, Rietveld E, Stokhof M, Denys D. Effects of deep brain stimulation on the lived experience of obsessive-compulsive disorder patients: in-depth interviews with 18 patients. PLoS ONE. 2015;10:e0135524.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Graat I, Franken S, Rooijen G van, Koning P de, Vulink N, Kroo M de, et al. Cognitive behavioral therapy in patients with deep brain stimulation for obsessive-compulsive disorder: a matched controlled study. Psychol Med. 2022:1–7.

  118. Mantione M, Nieman DH, Figee M, Denys D. Cognitive–behavioural therapy augments the effects of deep brain stimulation in obsessive–compulsive disorder. Psychol Med. 2014;44:3515–22.

    Article  CAS  PubMed  Google Scholar 

  119. Sharpe MJ, Stalnaker T, Schuck NW, Killcross S, Schoenbaum G, Niv Y. An integrated model of action selection: distinct modes of cortical control of striatal decision making. Annu Rev Psychol. 2018;70:1–24.

    Google Scholar 

  120. Bari A, Robbins TW. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog Neurobiol. 2013;108:44–79.

    Article  PubMed  Google Scholar 

  121. McLaughlin NCR, Dougherty DD, Eskandar E, Ward H, Foote KD, Malone DA, et al. Double blind randomized controlled trial of deep brain stimulation for obsessive-compulsive disorder: Clinical trial design. Contemp Clin Trials Commun. 2021;22:100785.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18:414–21.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cooper PS, Karayanidis F, McKewen M, McLellan-Hall S, Wong ASW, Skippen P, et al. Frontal theta predicts specific cognitive control-induced behavioural changes beyond general reaction time slowing. NeuroImage 2019;189:130–40.

    Article  PubMed  Google Scholar 

  124. Cohen MX, Donner TH. Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. J Neurophysiol. 2013;110:2752–63.

    Article  PubMed  Google Scholar 

  125. Vaghi MM, Vértes PE, Kitzbichler MG, Apergis-Schoute AM, van der Flier FE, Fineberg NA, et al. Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol Psychiatry. 2017;81:708–17.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Allawala A, Vartany S, Mathura R, Ritz H, Adkinson JA, Oswalt D, et al. Characterization and modulation of neural substrates underlying cognitive control in treatment-resistant depression. San Diego, CA: 2022 Society for Neuroscience Annual Meeting; 2022.

  127. Yousefi A, Paulk AC, Basu I, Dougherty DD, Eskandar EN, Eden UT, et al. COMPASS: an open-source, general-purpose software toolkit for computational psychiatry. Front Neurosci. 2019;12:957.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18:7–21.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Nagrale SS, Yousefi A, Netoff TI, Widge AS. In silico development and validation of Bayesian methods for optimizing deep brain stimulation to enhance cognitive control. J Neural Eng. 2023;20:036015.

    Article  PubMed Central  Google Scholar 

  130. Braunstein LM, Gross JJ, Ochsner KN. Explicit and implicit emotion regulation: a multi-level framework. Soc Cogn Affect Neurosci. 2017;12:1545–57.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gross JJ. Emotion Regulation: Current Status and Future Prospects. Psychol Inq. 2015;26:1–26.

    Article  Google Scholar 

  132. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25.

    Article  CAS  PubMed  Google Scholar 

  133. Cox J, Witten IB. Striatal circuits for reward learning and decision-making. Nat Rev Neurosci. 2019;20:482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Enkavi AZ, Eisenberg IW, Bissett PG, Mazza GL, MacKinnon DP, Marsch LA, et al. Large-scale analysis of test–retest reliabilities of self-regulation measures. Proc Natl Acad Sci. 2019;116:5472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Enkavi AZ, Poldrack RA. Implications of the Lacking Relationship Between Cognitive Task and Self-report Measures for Psychiatry. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2021;6:670–2.

    PubMed  Google Scholar 

  136. Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. ELife 2016;5:e11305.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Adamchic I, Hauptmann C, Barnikol UB, Pawelczyk N, Popovych O, Barnikol TT, et al. Coordinated reset neuromodulation for Parkinson’s disease: Proof-of-concept study. Mov Disord. 2014;29:1679–84.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Popovych OV, Tass PA. Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci. 2012;6:58.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Mobbs D, Headley DB, Ding W, Dayan P. Space, time, and fear: survival computations along defensive circuits. Trends Cogn Sci. 2020;24:228–41.

    Article  PubMed  Google Scholar 

  140. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hebb DO The organization of behavior; a neuropsychological theory. Oxford, England: Wiley; 1949.

  142. Fetz EE Chapter 12 - Restoring motor function with bidirectional neural interfaces. In: Dancause N, Nadeau S, Rossignol S, editors. Progress in Brain Research, vol. 218, Elsevier; 2015. p. 241–52.

  143. Nishimura Y, Perlmutter SI, Eaton RW, Fetz EE. Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 2013;80:1301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jackson A, Mavoori J, Fetz EE. Long-term motor cortex plasticity induced by an electronic neural implant. Nature 2006;44:56–60.

    Article  Google Scholar 

  145. Moritz CT. Now is the critical time for engineered neuroplasticity. Neurotherapeutics 2018;15:628–34.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Moorjani S, Walvekar S, Fetz EE, Perlmutter SI. Movement-dependent electrical stimulation for volitional strengthening of cortical connections in behaving monkeys. Proc Natl Acad Sci USA. 2022;119:e2116321119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bi G, Poo M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18:10464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Widge AS, Moritz CT. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface. J Neural Eng. 2014;11:024001.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Seeman SC, Mogen BJ, Fetz EE, Perlmutter SI. Paired stimulation for spike-timing-dependent plasticity in primate sensorimotor cortex. J Neurosci. 2017;37:1935–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Udupa K, Bahl N, Ni Z, Gunraj C, Mazzella F, Moro E, et al. Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson’s disease. J Neurosci. 2016;36:396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Veniero D, Ponzo V, Koch G. Paired associative stimulation enforces the communication between interconnected areas. J Neurosci. 2013;33:13773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lo M, Younk R, Widge AS. Paired electrical pulse trains for controlling connectivity in emotion-related brain circuitry. IEEE Trans Neural Syst Rehabil Eng. 2020;20:2721–30.

    Article  Google Scholar 

  153. Barra B, Conti S, Perich MG, Zhuang K, Schiavone G, Fallegger F, et al. Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nat Neurosci. 2022;25:924–34.

    Article  CAS  PubMed  Google Scholar 

  154. Borton D, Bonizzato M, Beauparlant J, DiGiovanna J, Moraud EM, Wenger N, et al. Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Res. 2014;78:21–29.

    Article  PubMed  Google Scholar 

  155. Peña Pino I, Hoover C, Venkatesh S, Ahmadi A, Sturtevant D, Patrick N, et al. Long-term spinal cord stimulation after chronic complete spinal cord injury enables volitional movement in the absence of stimulation. Front Syst Neurosci. 2020;14:35.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Webler RD, Oathes DJ, van Rooij SJH, Gewirtz JC, Nahas Z, Lissek SM, et al. Causally mapping human threat extinction relevant circuits with depolarizing brain stimulation methods. Neurosci Biobehav Rev. 2023;144:105005.

    Article  PubMed  Google Scholar 

  157. Bick SK, Patel SR, Katnani HA, Peled N, Widge A, Cash SS, et al. Caudate stimulation enhances learning. Brain 2019;142:2930–7.

    Article  PubMed  Google Scholar 

  158. Milad MR, Vidal-Gonzalez I, Quirk GJ. Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci. 2004;118:389–94.

    Article  CAS  PubMed  Google Scholar 

  159. Herman AB, Widge AS. Dynamic network targeting for closed loop deep brain stimulation. Neuropsychopharmacology 2018;44:219–20.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Vinogradov S, Herman A. Psychiatric Illnesses as Oscillatory Connectomopathies. Neuropsychopharmacology 2016;41:387–8.

    Article  CAS  PubMed  Google Scholar 

  161. Mathalon DH, Sohal VS. Neural oscillations and synchrony in brain dysfunction and neuropsychiatric disorders: It’s about time. JAMA Psychiatry. 2015;72:840–4.

    Article  PubMed  Google Scholar 

  162. Başar E, Schmiedt-Fehr C, Mathes B, Femir B, Emek-Savaş DD, Tülay E, et al. What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer’s disease, and bipolar disorder. Int J Psychophysiol. 2016;103:135–48.

    Article  PubMed  Google Scholar 

  163. Fries P. Rhythms for cognition: communication through coherence. Neuron 2015;88:220–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hahn G, Ponce-Alvarez A, Deco G, Aertsen A, Kumar A. Portraits of communication in neuronal networks. Nat Rev Neurosci. 2019;20:117.

    Article  CAS  PubMed  Google Scholar 

  165. Hultman R, Ulrich K, Sachs BD, Blount C, Carlson DE, Ndubuizu N, et al. Brain-wide electrical spatiotemporal dynamics encode depression vulnerability. Cell 2018;173:166–180.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Provenza NR, Paulk AC, Peled N, Restrepo MI, Cash SS, Dougherty DD, et al. Decoding task engagement from distributed network electrophysiology in humans. J Neural Eng. 2019;16:056015.

    Article  PubMed  PubMed Central  Google Scholar 

  167. de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18:779–86.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wang DD, de Hemptinne C, Miocinovic S, Ostrem JL, Galifianakis NB, Luciano MS, et al. Pallidal deep-brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinson’s disease. J Neurosci. 2018;38:4556–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wendt K, Denison T, Foster G, Krinke L, Thomson A, Wilson S, et al. Physiologically informed neuromodulation. J Neurological Sci. 2022;434:120121.

    Article  Google Scholar 

  170. Grover S, Nguyen JA, Reinhart RMG. Synchronizing Brain Rhythms to Improve Cognition. Annu Rev Med. 2021;72:29–43.

    Article  CAS  PubMed  Google Scholar 

  171. Gordon PC, Belardinelli P, Stenroos M, Ziemann U, Zrenner C. Prefrontal theta phase-dependent rTMS-induced plasticity of cortical and behavioral responses in human cortex. Brain Stimulation. 2022;15:391–402.

    Article  PubMed  Google Scholar 

  172. Mansouri F, Shanbour A, Mazza F, Fettes P, Zariffa J, Downar J. Effect of theta transcranial alternating current stimulation and phase-locked transcranial pulsed current stimulation on learning and cognitive control. Front Neurosci. 2019;13:1181.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Cagnan H, Pedrosa D, Little S, Pogosyan A, Cheeran B, Aziz T, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain. 2017;140:132–45.

  174. Holt AB, Kormann E, Gulberti A, Pötter-Nerger M, McNamara CG, Cagnan H, et al. Phase-dependent suppression of beta oscillations in Parkinson’s disease patients. J Neurosci. 2019;39:1119–34.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Hosseinian T, Yavari F, Biagi MC, Kuo M-F, Ruffini G, Nitsche MA, et al. External induction and stabilization of brain oscillations in the human. Brain Stimulation. 2021;14:579–87.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hosseinian T, Yavari F, Kuo M-F, Nitsche MA, Jamil A. Phase synchronized 6 Hz transcranial electric and magnetic stimulation boosts frontal theta activity and enhances working memory. NeuroImage 2021;245:118772.

    Article  CAS  PubMed  Google Scholar 

  177. Widge AS, Boggess M, Rockhill AP, Mullen A, Sheopory S, Loonis R, et al. Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation. PLOS ONE. 2018;13:e0207781.

    Article  PubMed  PubMed Central  Google Scholar 

  178. McNamara CG, Rothwell M, Sharott A. Stable, interactive modulation of neuronal oscillations produced through brain-machine equilibrium. Cell Rep. 2022;41:111616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Escobar Sanabria D, Johnson LA, Yu Y, Busby Z, Nebeck S, Zhang J, et al. Real-time suppression and amplification of frequency-specific neural activity using stimulation evoked oscillations. Brain Stimulation. 2020;13:1732–42.

    Article  PubMed  Google Scholar 

  180. Zanos S, Rembado I, Chen D, Fetz EE. Phase-locked stimulation during cortical beta oscillations produces bidirectional synaptic plasticity in awake monkeys. Curr Biol. 2018;28:2515–2526.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Carlson D, David LK, Gallagher NM, Vu M-AT, Shirley M, Hultman R, et al. Dynamically timed stimulation of corticolimbic circuitry activates a stress-compensatory pathway. Biol Psychiatry. 2017;82:904–13.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R, Dowdall JR, et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 2015;85:390–401.

    Article  CAS  PubMed  Google Scholar 

  183. Lüscher C. The emergence of a circuit model for addiction. Annu Rev Neurosci. 2016;39:257–76.

    Article  PubMed  Google Scholar 

  184. Hearing MC, Jedynak J, Ebner SR, Ingebretson A, Asp AJ, Fischer RA, et al. Reversal of morphine-induced cell-type–specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. PNAS 2016;113:757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci. 2021;22:458–71.

    Article  CAS  PubMed  Google Scholar 

  186. Peirs C, Seal RP. Neural circuits for pain: Recent advances and current views. Science 2016;354:578–84.

    Article  CAS  PubMed  Google Scholar 

  187. Boccard SGJ, Prangnell SJ, Pycroft L, Cheeran B, Moir L, Pereira EAC, et al. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain. World Neurosurg. 2017;106:625–37.

    Article  PubMed  Google Scholar 

  188. Huang Y, Cheeran B, Green AL, Denison TJ, Aziz TZ. Applying a sensing-enabled system for ensuring safe anterior cingulate deep brain stimulation for pain. Brain Sci. 2019;9:150.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Williams LM. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depression Anxiety. 2016;34:9–24.

    Article  PubMed  Google Scholar 

  190. Yang Y, Shanechi MM A framework for identification of brain network dynamics using a novel binary noise modulated electrical stimulation pattern. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015. p. 2087–90.

  191. Grado LL, Johnson MD, Netoff TI. Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease. PLOS Comput Biol. 2018;14:e1006606.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Preparation of this article was supported by R01MH125429, R01MH124687, R01MH123634, UH3NS100548, R01NS120851, R01MH119384, R21DA052568, and the MnDRIVE Brain Conditions Initiative. The views are entirely those of the author(s), not any funding body.

Author information

Authors and Affiliations

Authors

Contributions

ASW wrote the article.

Corresponding author

Correspondence to Alik S. Widge.

Ethics declarations

Competing interests

ASW receives DBS device donations from Medtronic and consulting fees related to DBS for psychiatric illness from Abbott. He holds multiple granted and pending patents in the area of closed-loop deep brain stimulation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widge, A.S. Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics, and plasticity. Neuropsychopharmacol. 49, 138–149 (2024). https://doi.org/10.1038/s41386-023-01643-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01643-y

Search

Quick links