Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Venlafaxine’s effect on resilience to stress is associated with a shift in the balance between glucose and fatty acid utilization

Abstract

Brain metabolism is a fundamental process involved in the proper development of the central nervous system and in the maintenance of the main higher functions in humans. As consequence, energy metabolism imbalance has been commonly associated to several mental disorders, including depression. Here, by employing a metabolomic approach, we aimed to establish if differences in energy metabolite concentration may underlie the vulnerability and resilience in an animal model of mood disorder named chronic mild stress (CMS) paradigm. In addition, we have investigated the possibility that modulation of metabolite concentration may represent a pharmacological target for depression by testing whether repeated treatment with the antidepressant venlafaxine may normalize the pathological phenotype by acting at metabolic level. The analyses were conducted in the ventral hippocampus (vHip) for its key role in the modulation of anhedonia, a core symptom of patients affected by depression. Interestingly, we showed that a shift from glycolysis to beta oxidation seems to be responsible for the vulnerability to chronic stress and that vHip metabolism contributes to the ability of the antidepressant venlafaxine to normalize the pathological phenotype, as shown by the reversal of the changes observed in specific metabolites. These findings may provide novel perspectives on metabolic changes that could serve as diagnostic markers and preventive strategies for the early detection and treatment of depression as well as for the identification of potential drug targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the experimental paradigms.
Fig. 2: Behavioral characterization of rats exposed to 6 weeks of chronic mild stress (CMS).
Fig. 3: Metabolite levels in the vHip of rats vulnerable and resilient to 6 weeks of chronic mild stress.
Fig. 4: Behavioral characterization of rats exposed to 6 weeks of chronic mild stress (CMS) and treated with venlafaxine (VLX) for 3 weeks.
Fig. 5: Metabolite levels in vHip modulated by chronic mild stress and normalized by venlafaxine (VLX) administration.

Similar content being viewed by others

References

  1. Moretti A, Gorini A, Villa RF. Affective disorders, antidepressant drugs and brain metabolism. Mol Psychiatry. 2003;8:773–85.

    Article  CAS  PubMed  Google Scholar 

  2. Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, et al. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry. 2021;12:546801.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gu X, Ke S, Wang Q, Zhuang T, Xia C, Xu Y, et al. Energy metabolism in major depressive disorder: Recent advances from omics technologies and imaging. Biomed Pharmacother. 2021;141:111869.

    Article  CAS  PubMed  Google Scholar 

  4. MacDonald K, Krishnan A, Cervenka E, Hu G, Guadagno E, Trakadis Y. Biomarkers for major depressive and bipolar disorders using metabolomics: A systematic review. Am J Med Genet Part B Neuropsychiatr Genet. 2019;180:122–37.

    Article  Google Scholar 

  5. Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, et al. Mitochondrial involvement in psychiatric disorders. Ann Med. 2008;40:281–95.

    Article  CAS  PubMed  Google Scholar 

  6. Triebelhorn J, Cardon I, Kuffner K, Bader S, Jahner T, Meindl K, et al. Induced neural progenitor cells and iPS-neurons from major depressive disorder patients show altered bioenergetics and electrophysiological properties. Mol Psychiatry. 2022. https://doi.org/10.1038/s41380-022-01660-1.

  7. Pu J, Liu Y, Zhang H, Tian L, Gui S, Yu Y, et al. An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder. Mol Psychiatry. 2021;26:4265–76.

    Article  CAS  PubMed  Google Scholar 

  8. McEwen BS. Brain on stress: How the social environment gets under the skin. Proc Natl Acad Sci. 2012;109:17180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pu J, Liu Y, Gui S, Tian L, Yu Y, Wang D, et al. Effects of pharmacological treatment on metabolomic alterations in animal models of depression. Transl Psychiatry. 2022;12:175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pu J, Liu Y, Gui S, Tian L, Yu Y, Song X, et al. Metabolomic changes in animal models of depression: a systematic analysis. Mol Psychiatry. 2021;26:7328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology. 1997;134:319–29.

    Article  CAS  PubMed  Google Scholar 

  12. Calabrese F, Brivio P, Gruca P, Lason-Tyburkiewicz M, Papp M, Riva MA. Chronic Mild Stress-Induced Alterations of Local Protein Synthesis: A Role for Cognitive Impairment. ACS Chem Neurosci. 2017;8:817–25.

    Article  CAS  PubMed  Google Scholar 

  13. Calabrese F, Brivio P, Sbrini G, Gruca P, Lason M, Litwa E, et al. Effect of lurasidone treatment on chronic mild stress-induced behavioural deficits in male rats: The potential role for glucocorticoid receptor signalling. J Psychopharmacol. 2020;34:420–8.

    Article  CAS  PubMed  Google Scholar 

  14. Calabrese F, Savino E, Papp M, Molteni R, Riva MA. Chronic mild stress-induced alterations of clock gene expression in rat prefrontal cortex: modulatory effects of prolonged lurasidone treatment. Pharm Res. 2016;104:140–50.

    Article  CAS  Google Scholar 

  15. Brivio P, Sbrini G, Tarantini L, Parravicini C, Gruca P, Lason M, et al. Stress Modifies the Expression of Glucocorticoid-Responsive Genes by Acting at Epigenetic Levels in the Rat Prefrontal Cortex: Modulatory Activity of Lurasidone. Int J Mol Sci. 2021;22:6197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brivio P, Buoso E, Masi M, Gallo MT, Gruca P, Lason M, et al. The coupling of RACK1 with the beta isoform of the glucocorticoid receptor promotes resilience to chronic stress exposure. Neurobiol Stress. 2021;15:100372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress. 2017;6:78–93.

    Article  PubMed  Google Scholar 

  18. Brivio P, Gallo MT, Gruca P, Lason M, Litwa E, Fumagalli F, et al. Resilience to chronic mild stress-induced anhedonia preserves the ability of the ventral hippocampus to respond to an acute challenge. Eur Arch Psychiatry Clin Neurosci. 2022. https://doi.org/10.1007/s00406-022-01470-0.

  19. Rossetti A, Paladini MS, Colombo M, Gruca P, Lason-Tyburkiewicz M, Tota-Glowczyk K, et al. Chronic Stress Exposure Reduces Parvalbumin Expression in the Rat Hippocampus through an Imbalance of Redox Mechanisms: Restorative Effect of the Antipsychotic Lurasidone. Int J Neuropsychopharmacol. 2018;21:883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rossetti AC, Papp M, Gruca P, Paladini MS, Racagni G, Riva MA, et al. Stress-induced anhedonia is associated with the activation of the inflammatory system in the rat brain: Restorative effect of pharmacological intervention. Pharmacol Res. 2016. https://doi.org/10.1016/j.phrs.2015.10.022.

  21. Brivio P, Audano M, Gallo MT, Gruca P, Lason M, Litwa E, et al. Metabolomic signature and mitochondrial dynamics outline the difference between vulnerability and resilience to chronic stress. Transl Psychiatry. 2022;12:87.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Coutens B, Yrondi A, Rampon C, Guiard BP. Psychopharmacological properties and therapeutic profile of the antidepressant venlafaxine. Psychopharmacology. 2022;239:2735–52.

    Article  CAS  PubMed  Google Scholar 

  23. Bialek K, Czarny P, Wigner P, Synowiec E, Barszczewska G, Bijak M, et al. Chronic Mild Stress and Venlafaxine Treatment Were Associated with Altered Expression Level and Methylation Status of New Candidate Inflammatory Genes in PBMCs and Brain Structures of Wistar Rats. Genes. 2021;12:667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wigner P, Synowiec E, Jóźwiak P, Czarny P, Bijak M, Białek K, et al. The Effect of Chronic Mild Stress and Venlafaxine on the Expression and Methylation Levels of Genes Involved in the Tryptophan Catabolites Pathway in the Blood and Brain Structures of Rats. J Mol Neurosci. 2020;70:1425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates Sixth Edition. San Diego, California USA: Elsevier Acad Press; 2007.

  26. Ghaffari MH, Jahanbekam A, Sadri H, Schuh K, Dusel G, Prehn C, et al. Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus overconditioned cows and pathway analysis. J Dairy Sci. 2019. https://doi.org/10.3168/jds.2019-17114.

  27. Durbin BP, Hardin JS, Hawkins DM, Rocke DM. A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics. 2002;18:S105–10.

    Article  PubMed  Google Scholar 

  28. van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics. 2006. https://doi.org/10.1186/1471-2164-7-142.

  29. Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc. 2022;17:1735–61.

    Article  CAS  PubMed  Google Scholar 

  30. Guzmán M, Blázquez C. Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Ess Fat Acids. 2004;70:287–92.

    Article  Google Scholar 

  31. Wigner P, Synowiec E, Czarny P, Bijak M, Jóźwiak P, Szemraj J, et al. Effects of venlafaxine on the expression level and methylation status of genes involved in oxidative stress in rats exposed to a chronic mild stress. J Cell Mol Med. 2020;24:5675–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Babić R, Babić M, Rastović P, Ćurlin M, Šimić J, Mandić K, et al. Resilience in Health and Illness. Psychiatr Danub. 2020;32:226–32.

    PubMed  Google Scholar 

  33. Bigio B, Mathé AA, Sousa VC, Zelli D, Svenningsson P, McEwen BS, et al. Epigenetics and energetics in ventral hippocampus mediate rapid antidepressant action: Implications for treatment resistance. Proc Natl Acad Sci. 2016;113:7906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, et al. Acute Activation of Oxidative Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells. Mol Cell. 2015;59:359–71.

    Article  CAS  PubMed  Google Scholar 

  35. Liu T, Deng K, Xue Y, Yang R, Yang R, Gong Z, et al. Carnitine and Depression. Front Nutr. 2022;9:853058.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bruce KD, Zsombok A, Eckel RH. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front Endocrinol. 2017;8:60.

    Article  Google Scholar 

  37. Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V. Fatty acids in energy metabolism of the central nervous system. Biomed Res Int. 2014;2014:472459.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schönfeld P, Reiser G. Why does Brain Metabolism not Favor Burning of Fatty Acids to Provide Energy? - Reflections on Disadvantages of the Use of Free Fatty Acids as Fuel for Brain. J Cereb Blood Flow Metab. 2013;33:1493–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Taïb B, Bouyakdan K, Hryhorczuk C, Rodaros D, Fulton S, Alquier T. Glucose regulates hypothalamic long-chain fatty acid metabolism via AMP-activated kinase (AMPK) in neurons and astrocytes. J Biol Chem. 2013. https://doi.org/10.1074/jbc.M113.506238.

  40. Adibhatla RM, Hatcher JF. Altered Lipid Metabolism in Brain Injury and Disorders. Lipids Health Dis. Dordrecht: Springer Netherlands. p. 241–68.

  41. Shriver LP, Manchester M. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci Rep. 2011;1:79.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee S-J, Zhang J, Choi AMK, Kim HP. Mitochondrial Dysfunction Induces Formation of Lipid Droplets as a Generalized Response to Stress. Oxid Med Cell Longev. 2013;2013:1–10.

    Article  Google Scholar 

  43. Chuang J-C, Cui H, Mason BL, Mahgoub M, Bookout AL, Yu HG, et al. Chronic social defeat stress disrupts regulation of lipid synthesis. J Lipid Res. 2010;51:1344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cermenati G, Audano M, Giatti S, Carozzi V, Porretta-Serapiglia C, Pettinato E, et al. Lack of Sterol Regulatory Element Binding Factor-1c Imposes Glial Fatty Acid Utilization Leading to Peripheral Neuropathy. Cell Metab. 2015;21:571–83.

    Article  CAS  PubMed  Google Scholar 

  45. Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci. 2018;11:10.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Trabjerg MS, Andersen DC, Huntjens P, Oklinski KE, Bolther L, Hald JL, et al. Downregulating carnitine palmitoyl transferase 1 affects disease progression in the SOD1 G93A mouse model of ALS. Commun Biol. 2021;4:509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mørkholt AS, Wiborg O, Nieland JGK, Nielsen S, Nieland JD. Blocking of carnitine palmitoyl transferase 1 potently reduces stress-induced depression in rat highlighting a pivotal role of lipid metabolism. Sci Rep. 2017;7:2158.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hüfner K, Galffy M, Egeter J, Giesinger JM, Arnhard K, Oberacher H, et al. Acute and Chronic Mental Stress both Influence Levels of Neurotransmitter Precursor Amino Acids and Derived Biogenic Amines. Brain Sci. 2020;10:322.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levone BR, Cryan JF, O’Leary OF. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol Stress. 2015;1:147–55.

    Article  PubMed  Google Scholar 

  52. Scaini G, Santos PM, Benedet J, Rochi N, Gomes LM, Borges LS, et al. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants. Brain Res Bull. 2010;82:224–7.

    Article  CAS  PubMed  Google Scholar 

  53. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36:587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Danial NN, Gramm CF, Scorrano L, Zhang C-Y, Krauss S, Ranger AM, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature. 2003;424:952–6.

    Article  CAS  PubMed  Google Scholar 

  55. King A, Gottlieb E. Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr Opin Cell Biol. 2009;21:885–93.

    Article  CAS  PubMed  Google Scholar 

  56. Mergenthaler P, Kahl A, Kamitz A, van Laak V, Stohlmann K, Thomsen S, et al. Mitochondrial hexokinase II (HKII) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state. Proc Natl Acad Sci. 2012;109:1518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taher M, Leen WG, Wevers RA, Willemsen MA. Lactate and its many faces. Eur J Paediatr Neurol. 2016;20:3–10.

    Article  PubMed  Google Scholar 

  58. Proia P, Di Liegro C, Schiera G, Fricano A, Di Liegro I. Lactate as a Metabolite and a Regulator in the Central Nervous System. Int J Mol Sci. 2016;17:1450.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

The behavioral part of the study was supported by the statutory activity of the Maj Institute of Pharmacology Polish Academy of Sciences (Krakow, Poland). The molecular study was supported by Ministero dell’Istruzione, dell’Università e della Ricerca to FC (PRIN2017, Project number 2017MLC3NF), by the Ministry of University and Research (MUR) Progetto Eccellenza (2023–2027) to the Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano and partially by the Italian Ministry of Health with Ricerca Corrente and 5×1000 funds to NM Maria Teresa Gallo was supported by cycle XXXVII of the doctorate in Pharmacological Biomolecular Sciences, Experimental and Clinical, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano.

Author information

Authors and Affiliations

Authors

Contributions

PB: conceptualization, formal analysis, data curation, investigation, writing original draft. MA: methodology, formal analysis. MTG: formal analysis. EM: formal analysis. PG: methodology. ML: methodology. EL: methodology. FF: review and editing. MP: methodology, review and editing. NM: data curation, review and editing. FC: conceptualization, visualization, writing original draft.

Corresponding author

Correspondence to Francesca Calabrese.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brivio, P., Audano, M., Gallo, M.T. et al. Venlafaxine’s effect on resilience to stress is associated with a shift in the balance between glucose and fatty acid utilization. Neuropsychopharmacol. 48, 1475–1483 (2023). https://doi.org/10.1038/s41386-023-01633-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01633-0

Search

Quick links