Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane excitability of nucleus accumbens neurons gates the incubation of cocaine craving

Abstract

After drug withdrawal, a key factor triggering relapse is progressively intensified cue-associated drug craving, termed incubation of drug craving. After withdrawal from cocaine self-administration, incubation of cocaine craving develops more reliably in rats compared to mice. This species difference provides an opportunity to determine rat-specific cellular adaptations, which may constitute the critical mechanisms that contribute to incubated cocaine craving in humans. Expression of incubated cocaine seeking is mediated, in part, by cocaine-induced cellular adaptations in medium spiny neurons (MSNs) within the nucleus accumbens (NAc). In rats, decreased membrane excitability in NAc MSNs is a prominent cellular adaptation, which is induced after cocaine self-administration and lasts throughout prolonged drug withdrawal. Here, we show that, similar to rats, mice exhibit decreased membrane excitability of dopamine D1 receptor (D1)-, but not D2 (D2)-, expressing MSNs within the NAc shell (NAcSh) after 1 d withdrawal from cocaine self-administration. However, in contrast to rats, this membrane adaptation does not persist in mice, diminishing after 45-d withdrawal. We also find that restoring the membrane excitability of NAcSh MSNs after cocaine withdrawal decreases cocaine seeking in rats. This suggests that drug-induced membrane adaptations are essential for behavioral expression of incubated cocaine craving. In mice, however, experimentally inducing hypoactivity of D1 NAcSh MSNs after cocaine withdrawal does not alter cocaine seeking, suggesting that MSN hypo-excitability alone is insufficient to increase cocaine seeking. Together, our results demonstrate an overall permissive role of cocaine-induced hypoactivity of NAcSh MSNs in gating increased cocaine seeking after prolonged cocaine withdrawal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cocaine-induced membrane adaptations in mice.
Fig. 2: Membrane excitability of D1 and D2 MSNs in mice after 1d withdrawal from cocaine self-administration.
Fig. 3: Membrane excitability of D1 and D2 MSNs in mice after 45d withdrawal from cocaine self-administration.
Fig. 4: Permissive role of cocaine-induced membrane adaptation in cue-induced cocaine seeking in rats.
Fig. 5: Induction of NAcSh D1 MSN hypoactivity fails to induce incubated cocaine seeking in mice.

Similar content being viewed by others

References

  1. Grimm JW, Hope BT, Wise RA, Shaham Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 2001;412:141–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dong Y, Taylor JR, Wolf ME, Shaham Y. Circuit and synaptic plasticity mechanisms of drug relapse. J Neurosci. 2017;37:10867–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. Neurobiology of the incubation of drug craving. Trends Neurosci. 2011;34:411–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Terrier J, Luscher C, Pascoli V. Cell-type specific insertion of GluA2-lacking AMPARs with cocaine exposure leading to sensitization, Cue-induced seeking, and incubation of craving. Neuropsychopharmacology 2016;41:1779–89.

    CAS  PubMed  Google Scholar 

  5. Steiner N, Rossetti C, Sakurai T, Yanagisawa M, de Lecea L, Magistretti PJ, et al. Hypocretin/orexin deficiency decreases cocaine abuse liability. Neuropharmacology 2018;133:395–403.

    CAS  PubMed  Google Scholar 

  6. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008;454:118–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci. 2016;17:351–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wright WJ, Dong Y. Psychostimulant-induced adaptations in nucleus accumbens glutamatergic transmission. Cold Spring Harb Perspect Med. 2020;10:a039255.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wright WJ, Dong Y. Silent synapses in cocaine-associated memory and beyond. J Neurosci. 2021;41:9275–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishikawa M, Mu P, Moyer JT, Wolf JA, Quock RM, Davies NM, et al. Homeostatic synapse-driven membrane plasticity in nucleus accumbens neurons. J Neurosci. 2009;29:5820–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong Y, Green T, Saal D, Marie H, Neve R, Nestler EJ, et al. CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci. 2006;9:475–7.

    CAS  PubMed  Google Scholar 

  12. Mu P, Moyer JT, Ishikawa M, Zhang Y, Panksepp J, Sorg BA, et al. Exposure to cocaine dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. J Neurosci. 2010;30:3689–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Ishikawa M, Yang Y, Otaka M, Kim JY, Gardner GR, et al. Cascades of homeostatic dysregulation promote incubation of cocaine craving. J Neurosci. 2018;38:4316–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kourrich S, Calu DJ, Bonci A. Intrinsic plasticity: an emerging player in addiction. Nat Rev Neurosci. 2015;16:173–84.

    CAS  PubMed  Google Scholar 

  15. Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A. Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 2013;152:236–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Delint-Ramirez I, Garcia-Oscos F, Segev A, Kourrich S. Cocaine engages a non-canonical, dopamine-independent, mechanism that controls neuronal excitability in the nucleus accumbens. Mol Psychiatry. 2020;25:680–91.

    CAS  PubMed  Google Scholar 

  17. Kourrich S, Thomas MJ. Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. J Neurosci. 2009;29:12275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim J, Park BH, Lee JH, Park SK, Kim JH. Cell type-specific alterations in the nucleus accumbens by repeated exposures to cocaine. Biol Psychiatry. 2011;69:1026–34.

    CAS  PubMed  Google Scholar 

  19. Wang J, Li KL, Shukla A, Beroun A, Ishikawa M, Huang X, et al. Cocaine triggers Astrocyte-mediated Synaptogenesis. Biol Psychiatry. 2021;89:386–97.

    CAS  PubMed  Google Scholar 

  20. Neumann PA, Wang Y, Yan Y, Wang Y, Ishikawa M, Cui R, et al. Cocaine-induced synaptic alterations in thalamus to nucleus accumbens projection. Neuropsychopharmacology 2016;41:2399–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia SH, Yu J, Huang X, Sesack SR, Huang YH, Schluter OM, et al. Cortical and Thalamic interaction with Amygdala-to-Accumbens Synapses. J Neurosci. 2020;40:7119–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ge F, Mu P, Guo R, Cai L, Liu Z, Dong Y, et al. Chronic sleep fragmentation enhances habenula cholinergic neural activity. Mol Psychiatry. 2021;26:941–54.

  23. Wright WJ, Graziane NM, Neumann PA, Hamilton PJ, Cates HM, Fuerst L, et al. Silent synapses dictate cocaine memory destabilization and reconsolidation. Nat Neurosci. 2020;23:32–46.

  24. Lee BR, Ma Y-Y, Huang YH, Wang X, Otaka M, Ishikawa M, et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci. 2013;16:1644–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry. 2022;27:669–86.

    CAS  PubMed  Google Scholar 

  26. Smith RJ, Lobo MK, Spencer S, Kalivas PW. Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol. 2013;23:546–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shuen JA, Chen M, Gloss B, Calakos N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci. 2008;28:2681–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu J, Sesack SR, Huang Y, Schluter OM, Grace AA, Dong Y. Contingent Amygdala inputs trigger Heterosynaptic LTP at Hippocampus-to-accumbens synapses. J Neurosci. 2022;42:6581–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu J, Ishikawa M, Wang J, Schluter OM, Sesack SR, Dong Y. Ventral Tegmental area projection regulates glutamatergic transmission in nucleus accumbens. Sci Rep. 2019;9:18451.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Graziane NM, Sun S, Wright WJ, Jang D, Liu Z, Huang YH, et al. Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nat Neurosci. 2016;19:915–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen B, Wang Y, Liu X, Liu Z, Dong Y, Huang YH. Sleep regulates incubation of cocaine craving. J Neurosci. 2015;35:13300–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma YY, Lee BR, Wang X, Guo C, Liu L, Cui R, et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 2014;83:1453–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Collins AL, Aitken TJ, Huang IW, Shieh C, Greenfield VY, Monbouquette HG, et al. Nucleus accumbens cholinergic interneurons oppose cue-motivated behavior. Biol Psychiatry. 2019;86:388–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu J, Yan Y, Li KL, Wang Y, Huang YH, Urban NN, et al. Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proc Natl Acad Sci USA. 2017;114:E8750–E59.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schall TA, Wright WJ, Dong Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry. 2021;26:234–46.

    PubMed  Google Scholar 

  36. Smith ACW, Scofield MD, Heinsbroek JA, Gipson CD, Neuhofer D, Roberts-Wolfe DJ, et al. Accumbens nNOS interneurons regulate cocaine relapse. J Neurosci. 2017;37:742–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nugent AL, Anderson EM, Larson EB, Self DW. Incubation of cue-induced reinstatement of cocaine, but not sucrose, seeking in C57BL/6J mice. Pharm Biochem Behav. 2017;159:12–17.

    CAS  Google Scholar 

  38. Mead AN, Zamanillo D, Becker N, Stephens DN. AMPA-receptor GluR1 subunits are involved in the control over behavior by cocaine-paired cues. Neuropsychopharmacology 2007;32:343–53.

    CAS  PubMed  Google Scholar 

  39. Pardo-Garcia TR, Garcia-Keller C, Penaloza T, Richie CT, Pickel J, Hope BT, et al. Ventral Pallidum is the primary target for accumbens D1 projections driving cocaine seeking. J Neurosci. 2019;39:2041–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162:1403–13.

    PubMed  Google Scholar 

  41. Porrino LJ, Lyons D, Miller MD, Smith HR, Friedman DP, Daunais JB, et al. Metabolic mapping of the effects of cocaine during the initial phases of self-administration in the nonhuman primate. J Neurosci. 2002;22:7687–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Beveridge TJ, Smith HR, Daunais JB, Nader MA, Porrino LJ. Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur J Neurosci. 2006;23:3109–18.

    PubMed  Google Scholar 

  43. White FJ, Hu XT, Zhang XF, Wolf ME. Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J Pharm Exp Ther. 1995;273:445–54.

    CAS  Google Scholar 

  44. Hu XT, Basu S, White FJ. Repeated cocaine administration suppresses HVA-Ca2+ potentials and enhances activity of K+ channels in rat nucleus accumbens neurons. J Neurophysiol. 2004;92:1597–607.

    CAS  PubMed  Google Scholar 

  45. Zhang XF, Cooper DC, White FJ. Repeated cocaine treatment decreases whole-cell calcium current in rat nucleus accumbens neurons. J Pharm Exp Ther. 2002;301:1119–25.

    CAS  Google Scholar 

  46. Zhang XF, Hu XT, White FJ. Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J Neurosci. 1998;18:488–98.

    PubMed  PubMed Central  Google Scholar 

  47. Loweth JA, Scheyer AF, Milovanovic M, LaCrosse AL, Flores-Barrera E, Werner CT, et al. Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nat Neurosci. 2014;17:73–80.

    CAS  PubMed  Google Scholar 

  48. Guo R, Wang Y, Yan R, Chen B, Ding W, Gorczyca MT, et al. Rapid eye movement sleep engages melanin-concentrating hormone neurons to reduce cocaine seeking. Biol Psychiatry. 2022;92:880–94.

    CAS  PubMed  Google Scholar 

  49. Wang YQ, Huang YH, Balakrishnan S, Liu L, Wang YT, Nestler EJ, et al. AMPA and NMDA receptor trafficking at cocaine-generated synapses. J Neurosci. 2021;41:1996–2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Guo R, Chen B, Rahman T, Cai L, Li Y, et al. Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry. 2021;26:3152–68.

    CAS  PubMed  Google Scholar 

  51. Ge F, Mu P, Guo R, Cai L, Liu Z, Dong Y, et al. Chronic sleep fragmentation enhances habenula cholinergic neural activity. Mol Psychiatry. 2021;26:941–54.

    PubMed  Google Scholar 

  52. Shukla A, Beroun A, Panopoulou M, Neumann PA, Grant SG, Olive MF, et al. Calcium-permeable AMPA receptors and silent synapses in cocaine-conditioned place preference. EMBO J. 2017;36:458–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith AC, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharm Rev. 2016;68:816–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10:561–72.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jaryd Ross and Min Li for excellent technical support. Cocaine-HCl was supplied by the Drug Supply Program of the National Institute on Drug Abuse.

Funding

The authors’ work was partially supported by NIH grants DA023206 (YD), DA040620 (YD), DA047861 (YD), DA051010 (YD), DA052419 (ZF), AA028800 (ZF).

Author information

Authors and Affiliations

Authors

Contributions

Design of the work (YH and YD); Acquisition, analysis, or interpretation of data for the work (YH, KL, JW, and YQW); Drafting or revising the work (YH, ZF, and YD).

Corresponding author

Correspondence to Yan Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, J., Li, Kl. et al. Membrane excitability of nucleus accumbens neurons gates the incubation of cocaine craving. Neuropsychopharmacol. 48, 1318–1327 (2023). https://doi.org/10.1038/s41386-023-01580-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01580-w

Search

Quick links