Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

mGluR5 in hippocampal CA1 pyramidal neurons mediates stress-induced anxiety-like behavior

Abstract

Pharmacological manipulation of mGluR5 has showed that mGluR5 is implicated in the pathophysiology of anxiety and mGluR5 has been proposed as a potential drug target for anxiety disorders. Nevertheless, the mechanism underlying the mGluR5 involvement in stress-induced anxiety-like behavior remains largely unknown. Here, we found that chronic restraint stress induced anxiety-like behavior and decreased the expression of mGluR5 in hippocampal CA1. Specific knockdown of mGluR5 in hippocampal CA1 pyramidal neurons produced anxiety-like behavior. Furthermore, both chronic restraint stress and mGluR5 knockdown impaired inhibitory synaptic inputs in hippocampal CA1 pyramidal neurons. Notably, positive allosteric modulator of mGluR5 rescued stress-induced anxiety-like behavior and restored the inhibitory synaptic inputs. These findings point to an essential role for mGluR5 in hippocampal CA1 pyramidal neurons in mediating stress-induced anxiety-like behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chronic restraint stress leaded to anxiety-like behaviors and impaired the synaptic inputs in hippocampal CA1 pyramidal neurons.
Fig. 2: Chronic restraint stress decreases mGluR5 expression in hippocampal CA1 and mGluR5 knockdown produced anxiety-like behaviors.
Fig. 3: Knockdown of mGluR5 in hippocampal CA1 pyramidal neurons impairs inhibitory synaptic inputs.
Fig. 4: The CDPPB restored stress-impaired inhibitory synaptic inputs.
Fig. 5: The CDPPB restored stress-induced anxiety-like behavior.

Similar content being viewed by others

References

  1. Remes O, Brayne C, van der Linde R, Lafortune L. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav. 2016;6:e00497.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang SH, Liu WZ, Qin X, Guo CY, Xiong QC, Wang Y, et al. Association of increased amygdala activity with stress-induced anxiety but not social avoidance behavior in mice. Neurosci Bull. 2022;38:16–28.

    Article  CAS  PubMed  Google Scholar 

  3. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime preva- lence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.

    Article  PubMed  Google Scholar 

  4. Luo ZY, Huang L, Lin S, Yin YN, Jie W, Hu NY, et al. Erbin in amygdala parvalbumin- positive neurons modulates anxiety-like behaviors. Biol Psychiatry. 2020;87:926–36.

    Article  CAS  PubMed  Google Scholar 

  5. Bluett EJ, Homan EJ, Morrison KL, Levin ME, Twohig MP. Acceptance and commit- ment therapy for anxiety and OCD spectrum disorders: an empirical review. J Anxiety Disord. 2014;28:612–24.

    Article  PubMed  Google Scholar 

  6. Ross RA, Foster SL, Ionescu DF. The role of chronic stress in anxious depression. Chronic Stress 2017;1:2470547016689472.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim KS, Han PL. Optimization of chronic stress paradigms using anxiety- and depre- ssion-like behavioral parameters. J Neurosci Res. 2006;83:497–507.

    Article  CAS  PubMed  Google Scholar 

  8. Pal MM. Glutamate: The master neurotransmitter and its implications in chronic tress and mood disorders. Front Hum Neurosci. 2021;15:722323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Acher FC, Cabayé A, Eshak F, Goupil-Lamy A, Pin JP. Metabotropic glutamate receptor orthosteric ligands and their binding sites. Neuropharmacology 2022;204:108886.

    Article  CAS  PubMed  Google Scholar 

  10. Bodzęta A, Scheefhals N, MacGillavry HD. Membrane trafficking and positioning of mGluRs at presynaptic and postsynaptic sites of excitatory synapses. Neurophar- Macol. 2021;200:8799.

    Google Scholar 

  11. McCullock TW, Kammermeier PJ. The evidence for and consequences of metabotro- pic glutamate receptor heterodimerization. Neuropharmacology 2021;199:108801.

    Article  CAS  PubMed  Google Scholar 

  12. Esterlis I, Holmes SE, Sharma P, Krystal JH, DeLorenzo C. Metabotropic Glutamat- ergic Receptor 5 and Stress Disorders: Knowledge Gained From Receptor Imaging Studies. Biol Psychiatry. 2018;84:95–105.

    Article  CAS  PubMed  Google Scholar 

  13. Lin S, Li X, Chen YH, Gao F, Chen H, Hu NY, et al. Social isolation during adolescence induces anxiety behaviors and enhances firing activity in BLA pyramidal neurons via mGluR5 upregulation. Mol Neurobiol. 2018;55:5310–20.

    Article  CAS  PubMed  Google Scholar 

  14. Spooren WP, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, et al. Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6- (phenylethynyl) pyridine in rodents. J Pharm Exp Ther. 2000;295:1267–75.

    CAS  Google Scholar 

  15. Klodzinska A, Tatarczyńska E, Chojnacka-Wójcik E, Nowak G, Cosford NDP, Pilc A. Anxiolytic-like effects of MTEP, a potent and selective mGlu5 receptor agonist does not involve GABA(A) signaling. Neuropharmacology 2004;47:342–50.

    Article  CAS  PubMed  Google Scholar 

  16. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010;65:7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ross TW, Easton A. The hippocampal horizon: constructing and segmenting experience for episodic memory. Neurosci Biobehav Rev. 2022;132:181–96.

    Article  CAS  PubMed  Google Scholar 

  18. Dang R, Zhou Y, Zhang Y, Liu D, Wu M, Liu A, et al. Regulation of Social Memory by Lateral Entorhinal Cortical Projection to Dorsal Hippocampal CA2. Neurosci Bull. 2022;38:318–22.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Günther A, Luczak V, Gruteser N, Abel T, Baumann A. HCN4 knockdown in dorsal hippocampus promotes anxiety-like behavior in mice. Genes Brain Behav. 2019;18:e12550.

    Article  PubMed  Google Scholar 

  20. Abela AR, Browne CJ, Sargin D, Prevot TD, Ji XD, Li ZX, et al. Median raphe serotonin neurons promote anxiety-like behavior via inputs to the dorsal hippocampus. Neuropharmacology 2020;168:107985.

    Article  CAS  Google Scholar 

  21. Chang S, Bok P, Tsai CY, Sun CP, Liu H, Deussing JM, et al. NPTX2 is a key component in the regulation of anxiety. Neuropsychopharmacology 2018;43:1943–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, et al. Bidirectional Control of Anxiety-Related Behaviors in Mice: Role of Inputs Arising from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex. Neuropsycho- Pharmacol. 2017;42:1715–28.

    Article  Google Scholar 

  23. Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 2018;97:670–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buynitsky T, Mostofsky DI. Restraint stress in biobehavioral research: Recent developments. Neurosci Biobehav Rev. 2009;33:1089–98.

    Article  PubMed  Google Scholar 

  25. Yang Y, Cui YH, Sang KN, Dong YY, Ni ZY, Ma SS, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018;554:317–22.

    Article  CAS  PubMed  Google Scholar 

  26. Mah L, Szabuniewicz C, Fiocco AJ. Can anxiety damage the brain? Curr Opin Psychiatry. 2016;29:56–63.

    Article  PubMed  Google Scholar 

  27. Verpelli C, Dvoretskova E, Vicidomini C, Rossi F, Chiappalone M, Schoen M, et al. Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J Biol Chem. 2011;286:34839–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kubota J, Mikami Y, Kanemaru K, Sekiya H, Okubo Y, Iino M. Whisker experience- dependent mGluR signaling maintains synaptic strength in the mouse adolescent cortex. Eur J Neurosci. 2016;44:2004–14.

    PubMed  Google Scholar 

  29. Bekhbat M, Mukhara D, Dozmorov MG, Stansfield JC, Benusa SD, Hyer MM, et al. Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacology 2021;46:949–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lei T, Dong D, Song MY, Sun YF, Liu XF, Zhao H. Rislenemdaz treatment in the lateral habenula improves despair-like behavior in mice. Neuropsychopharmacology 2020;45:1717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aubry AV, Khandaker H, Ravenelle R, Grunfeld IS, Bonnefil V, Chan KL, et al. A diet enriched with curcumin promotes resilience to chronic social defeat stress. Neuropsychopharmacology 2019;44:733–42.

    Article  CAS  PubMed  Google Scholar 

  32. Fischell J, Dyke AMV, Kvarta MD, LeGates TA, Thompson SM. Rapid Antidepressant Action and Restoration of Excitatory Synaptic Strength After Chronic Stress by Negative Modulators of Alpha5-Containing GABAA Receptors. Neuropsychopharmacology. 2015;40:2499–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yim YS, Han W, Seo J, Kim CH, Kim DG. Differential mGluR5 expression in response to the same stress causes individually adapted hippocampal network activity. Biochem Biophys Res Commun. 2018;495:1305–11.

    Article  CAS  PubMed  Google Scholar 

  34. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, et al. Mice Lacking Metabotropic Glutamate Receptor 5 Show Impaired Learning and Reduced CA1 Long-Term Potentiation (LTP) But Normal CA3 LTP. J Neurosci. 1997;17:5196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu J, Zhu YL, Contractor A, Heinemann SF. Metabotropic glutamate receptor 5 (mGluR5) has a critical role in inhibitory learning. J Neurosci. 2009;29:3676–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barnes SA, Pinto-Duarte A, Kappe A, Zembrzycki A, Metzler A, Mukamel EA, et al. Disruption of mGluR5 in parvalbumin-positive interneurons induces core features of neurodevelopmental disorders. Mol Psychiatry. 2015;20:1161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu J, Antion MD, Nomura T, Kraniotis S, Zhu YL, Contractor A. Hippocampal Metaplasticity Is Required for the Formation of Temporal Associative Memories. J Neurosci. 2014;34:16762–73.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim CS, Chang PY, Johnston D. Enhancement of Dorsal Hippocampal Activity by Knockdown of HCN1 Channels Leads to Anxiolytic- and Antidepressant-like Behaviors. Neuron 2012;75:503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun XD, Li L, Liu F, Huang ZH, Bean JC, Jiao HF, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pérez MA, Peñaloza-Sancho V, Ahumada J, Fuenzalida M, Dagnino-Subiabre A. n-3 Polyunsaturated fatty acid supplementation restored impaired memory and GABAergic synaptic efficacy in the hippocampus of stressed Rats. Nutr Neurosci. 2018;21:556–69.

    Article  PubMed  Google Scholar 

  41. Mei L, Zhou Y, Sun Y, Liu H, Zhang DW, Liu PP, et al. Acetylcholine muscarinic receptors in ventral hippocampus modulate stress-induced anxiety-like behaviors in mice. Front Mol Neurosci. 2020;13:598811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu W, Zhang MY, Czéh B, Flügge G, Zhang WQ. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 2010;35:1693–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li MX, Li Q, Sun XJ, Luo C, Li Y, Wang YN, et al. Increased Homer1-mGluR5 mediates chronic stress-induced depressive-like behaviors and glutamatergic dysregulation via activation of PERK-eIF2α. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109682.

    Article  CAS  PubMed  Google Scholar 

  44. Liu CY, Jiang XX, Zhu YH, Wei DN. Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine produces antidepressant effects in rats: Role of brain-derived neurotrophic factor. Neuroscience 2012;223:219–24.

    Article  CAS  PubMed  Google Scholar 

  45. Singh B, Henneberger C, Betances D, Arevalo MA, Rodríguez-Tébar A, Meier JC, et al. Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons. J Neurosci. 2006;26:7189–7200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spyrka J, Hess G. Repeated Neck Restraint Stress Bidirectionally modulates Excitatory Transmission in the Dentate Gyrus and Performance in a Hippocampus- dependent Memory Task. Neuroscience 2018;379:32–44.

    Article  CAS  PubMed  Google Scholar 

  47. Charalambakis NE, Govindaiah G, Campbell PW, Guido W. Developmental remodeling of thalamic interneurons requires retinal signaling. J Neurosci. 2019;39:3856–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chung G, Shim HG, Kim CY, Ryu HH, Jang DC, Kim SH, et al. Persistent activity of metabotropic glutamate receptor 5 in the periaqueductal gray constrains emergence of chronic neuropathic pain. Curr Biol. 2020;30:4631–42.

    Article  CAS  PubMed  Google Scholar 

  49. Chong CH, Li Q, Mak PHS, Ng CCP, Leung EHW, Tan VH, et al. Lrrc7 mutant mice model developmental emotional dysregulation that can be alleviated by mGluR5 allosteric modulation. Transl Psychiatry. 2019;9:244.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yu W, Kwon J, Sohn JW, Lee SH, Kim S, Ho WK. mGluR5-dependent modulation of dendritic excitability in CA1 pyramidal neurons mediated by enhancement of persistent Na+currents. J Physiol. 2018;596:4141–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li DP, Zhu LH, Pachuau J, Lee HA, Pan HL. mGluR5 Upregulation increases excitability of hypothalamic presympathetic neurons through NMDA receptor trafficking in spontaneously hypertensive rats. J Neurosci. 2014;34:4309–17.

    Article  PubMed  Google Scholar 

  52. Chen M, Shu S, Yan HH, Pei L, Wang ZF, Wan Q, et al. Hippocampal Endothelin-1 decreases excitability of pyramidal neurons and produces anxiolytic effects. Neuropharmacology 2017;118:242–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding

This work was supported by grants from the STI2030-Major Projects (2021ZD0202704), the National Natural Science Foundation of China (82090032, 31830033, 32200950), the Key-Area Research and Development Program of Guangdong Province (2018B030334001, 2018B030340001), the Science and Technology Program of Guangzhou (202007030013), Basic and Applied Basic Research Foundation of Guangdong Province, China (2022A1515011106).

Author information

Authors and Affiliations

Authors

Contributions

T-MG proposed the concept and designed the experiments. XL, Z-JD. J-NX, Z-ML, SL, HC, and S-JL performed the experiments. XL, Z-JD, and X-WL analyzed the results. XL and Z-JD interpreted the results. T-MG, J-MY, and XL wrote and edited the manuscript.

Corresponding author

Correspondence to Tian-Ming Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Du, ZJ., Xu, JN. et al. mGluR5 in hippocampal CA1 pyramidal neurons mediates stress-induced anxiety-like behavior. Neuropsychopharmacol. 48, 1164–1174 (2023). https://doi.org/10.1038/s41386-023-01548-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01548-w

This article is cited by

Search

Quick links