Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Noninvasive neuromodulation of the prefrontal cortex in mental health disorders

Abstract

More than any other brain region, the prefrontal cortex (PFC) gives rise to the singularity of human experience. It is therefore frequently implicated in the most distinctly human of all disorders, those of mental health. Noninvasive neuromodulation, including electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) among others, can—unlike pharmacotherapy—directly target the PFC and its neural circuits. Direct targeting enables significantly greater on-target therapeutic effects compared with off-target adverse effects. In contrast to invasive neuromodulation approaches, such as deep-brain stimulation (DBS), noninvasive neuromodulation can reversibly modulate neural activity from outside the scalp. This combination of direct targeting and reversibility enables noninvasive neuromodulation to iteratively change activity in the PFC and its neural circuits to reveal causal mechanisms of both disease processes and healthy function. When coupled with neuronavigation and neurophysiological readouts, noninvasive neuromodulation holds promise for personalizing PFC neuromodulation to relieve symptoms of mental health disorders by optimizing the function of the PFC and its neural circuits. ClinicalTrials.gov Identifier: NCT03191058.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Simulation models of ECT and MST.
Fig. 2: Simulation models of bifrontal tCS, figure-8 coil TMS, and right unilateral ECT.

References

  1. 1.

    Deng Z-D, McClintock SM, Oey NE, Luber B, Lisanby SH. Neuromodulation for mood and memory: from the engineering bench to the patient bedside. Curr Opin Neurobiol. 2015;30:38–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Mowbray RM. Historical aspects of electric convulsant therapy. Scott Med J. 1959;4:373–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Endler NS. The origins of electroconvulsive-therapy (ECT). Convul Ther. 1988;4:5–23.

    Google Scholar 

  4. 4.

    Food and Drug Administration, HHS. Neurological Devices; Reclassification of Electroconvulsive Therapy Devices; Effective Date of Requirement for Premarket Approval for Electroconvulsive Therapy Devices for Certain Specified Intended Uses. Final order. Fed Regist. 2018;83:66103–24.

  5. 5.

    Blumenfeld H, McNally KA, Ostroff RB, Zubal IG. Targeted prefrontal cortical activation with bifrontal ECT. Psychiatry Res. 2003;123:165–70.

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Halliday AM, Davison K, Browne MW, Kreeger LC. A comparison of the effects on depression and memory of bilateral E.C.T. and unilateral E.C.T. to the dominant and non-dominant hemispheres. Br J Psychiatry. 1968;114:997–1012.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Weiner RD, Rogers HJ, Davidson JR, Squire LR. Effects of stimulus parameters on cognitive side effects. Ann N. Y Acad Sci. 1986;462:315–25.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Letemendia FJ, Delva NJ, Rodenburg M, Lawson JS, Inglis J, Waldron JJ, et al. Therapeutic advantage of bifrontal electrode placement in ECT. Psychol Med. 1993;23:349–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Bailine SH, Rifkin A, Kayne E, Selzer JA, Vital-Herne J, Blieka M, et al. Comparison of bifrontal and bitemporal ECT for major depression. Am J Psychiatry. 2000;157:121–3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Sackeim HA, Prudic J, Devanand DP, Nobler MS, Lisanby SH, Peyser S, et al. A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities. Arch Gen Psychiatry. 2000;57:425–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Kellner CH, Knapp R, Husain MM, Rasmussen K, Sampson S, Cullum M, et al. Bifrontal, bitemporal and right unilateral electrode placement in ECT: randomised trial. Br J Psychiatry. 2010;196:226–34.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Su L, Jia Y, Liang S, Shi S, Mellor D, Xu Y. Multicenter randomized controlled trial of bifrontal, bitemporal, and right unilateral electroconvulsive therapy in major depressive disorder. Psychiatry Clin Neurosci. 2019;73:636–41.

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Lee WH, Deng Z-D, Kim TS, Laine AF, Lisanby SH, Peterchev AV. Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity. Neuroimage. 2012;59:2110–23.

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Inglis J. Shock, surgery and cerebral asymmetry. Br J Psychiatry. 1970;117:143–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Abrams R, Taylor MA. Anterior bifrontal ECT: a clinical trial. Br J Psychiatry. 1973;122:587–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Sackeim HA, Luber B, Katzman GP, Moeller JR, Prudic J, Devanand DP, et al. The effects of electroconvulsive therapy on quantitative electroencephalograms. Relatsh Clin outcome Arch Gen psychiatry. 1996;53:814–24.

    CAS  Article  Google Scholar 

  17. 17.

    Luber B, Nobler MS, Moeller JR, Katzman GP, Prudic J, Devanand DP, et al. Quantitative EEG during seizures induced by electroconvulsive therapy: relations to treatment modality and clinical features. II. Topographic analyses J ECT. 2000;16:229–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Heikman P, Tuunainen A, Sailas E, Kuoppasalmi K. Seizures induced by low-dose right unilateral and bifrontal electroconvulsive stimuli. J ECT. 2003;19:189–93.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell CC, Sackeim HA, et al. Decreased regional brain metabolism after ECT. Am J Psychiatry. 2001;158:305–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Qi S, Abbott CC, Narr KL, Jiang R, Upston J, McClintock SM, et al. Electroconvulsive therapy treatment responsive multimodal brain networks. Hum brain Mapp. 2020;41:1775–85.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, et al. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr Scand. 2016;133:154–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Miskowiak KW, Macoveanu J, Jorgensen MB, Ott CV, Stottrup MM, Jensen HM, et al. Effect of electroconvulsive therapy on neural response to affective pictures: a randomized, sham-controlled fMRI study. Eur Neuropsychopharmacol. 2018;28:915–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Nobler MS, Sackeim HA. Neurobiological correlates of the cognitive side effects of electroconvulsive therapy. J ECT. 2008;24:40–5.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Hirano J, Takamiya A, Yamagata B, Hotta S, Miyasaka Y, Pu S, et al. Frontal and temporal cortical functional recovery after electroconvulsive therapy for depression: a longitudinal functional near-infrared spectroscopy study. J Psychiatr Res. 2017;91:26–35.

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B. Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychological Med. 2003;33:1277–84.

    CAS  Article  Google Scholar 

  26. 26.

    Bai T, Wei Q, Zu M, Xie W, Wang J, Gong-Jun J, et al. Functional plasticity of the dorsomedial prefrontal cortex in depression reorganized by electroconvulsive therapy: Validation in two independent samples. Hum Brain Mapp. 2019;40:465–73.

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Zhang T, He K, Bai T, Lv H, Xie X, Nie J, et al. Altered neural activity in the reward-related circuit and executive control network associated with amelioration of anhedonia in major depressive disorder by electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2021;109:110193.

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Lyden H, Espinoza RT, Pirnia T, Clark K, Joshi SH, Leaver AM, et al. Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression. Transl Psychiatry. 2014;4:e380.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Tsolaki E, Narr KL, Espinoza R, Wade B, Hellemann G, Kubicki A, et al. Subcallosal cingulate structural connectivity differs in responders and nonresponders to electroconvulsive therapy. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:10–9.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    van Waarde JA, Scholte HS, van Oudheusden LJ, Verwey B, Denys D, van Wingen GA. A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression. Mol Psychiatry. 2015;20:609–14.

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Sun H, Jiang R, Qi S, Narr KL, Wade BS, Upston J, et al. Preliminary prediction of individual response to electroconvulsive therapy using whole-brain functional magnetic resonance imaging data. Neuroimage Clin. 2020;26:102080.

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Wang J, Wei Q, Yuan X, Jiang X, Xu J, Zhou X, et al. Local functional connectivity density is closely associated with the response of electroconvulsive therapy in major depressive disorder. J Affect Disord. 2018;225:658–64.

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Xu J, Wei Q, Bai T, Wang L, Li X, He Z, et al. Electroconvulsive therapy modulates functional interactions between submodules of the emotion regulation network in major depressive disorder. Transl Psychiatry. 2020;10:271.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Moreno-Ortega M, Prudic J, Rowny S, Patel GH, Kangarlu A, Lee S, et al. Resting state functional connectivity predictors of treatment response to electroconvulsive therapy in depression. Sci Rep. 2019;9:5071.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Cano M, Cardoner N, Urretavizcaya M, Martínez-Zalacaín I, Goldberg X, Via E, et al. Modulation of limbic and prefrontal connectivity by electroconvulsive therapy in treatment-resistant depression: a preliminary study. Brain Stimul. 2016;9:65–71.

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Argyelan M, Lencz T, Kaliora S, Sarpal DK, Weissman N, Kingsley PB, et al. Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy. Transl Psychiatry. 2016;6:e789.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Perrin JS, Merz S, Bennett DM, Currie J, Steele DJ, Reid IC, et al. Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. Proc Natl Acad Sci USA. 2012;109:5464–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Gan JL, Duan HF, Cheng ZX, Yang JM, Zhu XQ, Gao CY, et al. Neuroprotective effect of modified electroconvulsive therapy for schizophrenia: a proton magnetic resonance spectroscopy study. J Nerv Ment Dis. 2017;205:480–6.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Xia M, Wang J, Sheng J, Tang Y, Li C, Lim K, et al. Effect of electroconvulsive therapy on medial prefrontal gamma-aminobutyric acid among schizophrenia patients: a proton magnetic resonance spectroscopy study. J ECT. 2018;34:227–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Huang H, Jiang Y, Xia M, Tang Y, Zhang T, Cui H, et al. Increased resting-state global functional connectivity density of default mode network in schizophrenia subjects treated with electroconvulsive therapy. Schizophr Res. 2018;197:192–9.

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Thomann PA, Wolf RC, Nolte HM, Hirjak D, Hofer S, Seidl U, et al. Neuromodulation in response to electroconvulsive therapy in schizophrenia and major depression. Brain Stimul. 2017;10:637–44.

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Spellman T, Peterchev AV, Lisanby SH. Focal electrically administered seizure therapy: a novel form of ECT illustrates the roles of current directionality, polarity, and electrode configuration in seizure induction. Neuropsychopharmacology. 2009;34:2002–10.

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Deng Z-D, Lisanby SH, Peterchev AV. Effect of anatomical variability on electric field characteristics of electroconvulsive therapy and magnetic seizure therapy: a parametric modeling study. IEEE Trans Neural Syst Rehabil Eng. 2015;23:22–31.

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Sahlem GL, McCall WV, Short EB, Rosenquist PB, Fox JB, Youssef NA, et al. A two-site, open-label, non-randomized trial comparing Focal Electrically-Administered Seizure Therapy (FEAST) and right unilateral ultrabrief pulse electroconvulsive therapy (RUL-UBP ECT). Brain Stimul. 2020;13:1416–25.

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Lee WH, Lisanby SH, Laine AF, Peterchev AV. Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model. Eur Psychiatry. 2016;36:55–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Deng Z-D, Lisanby SH, Peterchev AV. Controlling stimulation strength and focality in electroconvulsive therapy via current amplitude and electrode size and spacing: comparison with magnetic seizure therapy. J ECT. 2013;29:325–35.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Peterchev AV, Krystal AD, Rosa MA, Lisanby SH. Individualized low-amplitude seizure therapy: minimizing current for electroconvulsive therapy and magnetic seizure therapy. Neuropsychopharmacology. 2015;40:2076–84.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Deng Z-D, Lisanby SH, Peterchev AV. Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study. J Neural Eng. 2011;8:016007.

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Regenold WT, Noorani RJ, Piez D, Patel P. Nonconvulsive electrotherapy for treatment resistant unipolar and bipolar major depressive disorder: a proof-of-concept trial. Brain Stimul. 2015;8:855–61.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Mayberg HS. Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull. 2003;65:193–207.

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Holmes AJ, Pizzagalli DA. Response conflict and frontocingulate dysfunction in unmedicated participants with major depression. Neuropsychologia 2008;46:2904–13.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35:192–216.

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology. 2011;36:183–206.

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Liao C, Feng Z, Zhou D, Dai Q, Xie B, Ji B, et al. Dysfunction of fronto-limbic brain circuitry in depression. Neuroscience. 2012;201:231–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Sackeim HA, Prudic J, Devanand DP, Kiersky JE, Fitzsimons L, Moody BJ, et al. Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N. Engl J Med. 1993;328:839–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Wilkinson ST, Agbese E, Leslie DL, Rosenheck RA. Identifying recipients of electroconvulsive therapy: data from privately insured Americans. Psychiatr Serv. 2018;69:542–8.

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Lisanby SH, Schlaepfer TE, Fisch HU, Sackeim HA. Magnetic seizure therapy of major depression. Arch Gen Psychiatry. 2001;58:303–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    McClintock SM, Dewind NK, Husain MM, Rowny SB, Spellman TJ, Terrace H, et al. Disruption of component processes of spatial working memory by electroconvulsive shock but not magnetic seizure therapy. Int J Neuropsychopharmacol. 2013;16:177–87.

    PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    McClintock SM, Tirmizi O, Chansard M, Husain MM. A systematic review of the neurocognitive effects of magnetic seizure therapy. Int Rev Psychiatry. 2011;23:413–23.

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Moscrip TD, Terrace HS, Sackeim HA, Lisanby SH. Randomized controlled trial of the cognitive side-effects of magnetic seizure therapy (MST) and electroconvulsive shock (ECS). Int J Neuropsychopharmacol. 2006;9:1–11.

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Fitzgerald PB, Hoy KE, Elliot D, McQueen S, Wambeek LE, Chen L, et al. A pilot study of the comparative efficacy of 100 Hz magnetic seizure therapy and electroconvulsive therapy in persistent depression. Depression Anxiety. 2018;35:393–401.

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Daskalakis ZJ, Dimitrova J, McClintock SM, Sun Y, Voineskos D, Rajji TK, et al. Magnetic seizure therapy (MST) for major depressive disorder. Neuropsychopharmacology. 2020;45:276–82.

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    El-Deeb FA, Gad EA, Kandeel AA, Haiba AA, Fathy SM, Petterson MM, et al. Comparative effectiveness clinical trial of magnetic seizure therapy and electroconvulsive therapy in major depressive disorder. Ann Clin Psychiatry. 2020;32:239–48.

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Kayser S, Bewernick BH, Grubert C, Hadrysiewicz BL, Axmacher N, Schlaepfer TE. Antidepressant effects, of magnetic seizure therapy and electroconvulsive therapy, in treatment-resistant depression. J Psychiatr Res. 2011;45:569–76.

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Hoy KE, Thomson RH, Cherk M, Yap KS, Daskalakis ZJ, Fitzgerald PB. Effect of magnetic seizure therapy on regional brain glucose metabolism in major depression. Psychiatry Res. 2013;211:169–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Kayser S, Bewernick BH, Wagner S, Schlaepfer TE. Effects of magnetic seizure therapy on anterograde and retrograde amnesia in treatment-resistant depression. Depress Anxiety. 2020;37:125–33.

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    George MS. Whither TMS: a one-trick pony or the beginning of a neuroscientific revolution? Am J Psychiatry. 2019;176:904–10.

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Deng Z-D, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6:1–13.

    Article  Google Scholar 

  70. 70.

    Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet. 2018;391:1683–92.

    PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am J Psychiatry. 2020;177:716–26.

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Slotema CW, Blom JD, Hoek HW, Sommer IE. Should we expand the toolbox of psychiatric treatment methods to include Repetitive Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. J Clin Psychiatry. 2010;71:873–84.

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Group UER. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet. 2003;361:799–808.

    Article  Google Scholar 

  74. 74.

    Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry. 2015;72:305–15.

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Creutzfeldt OD. Generality of the functional structure of the neocortex. Naturwissenschaften. 1977;64:507–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Fuster JM. The prefrontal cortex. 5th ed. Cambridge, MA: Academic press; 2015.

  78. 78.

    Richieri R, Verger A, Boyer L, Boucekine M, David A, Lançon C, et al. Predictive value of dorso-lateral prefrontal connectivity for rTMS response in treatment-resistant depression: a brain perfusion SPECT study. Brain Stimul. 2018;11:1093–7.

    PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Avissar M, Powell F, Ilieva I, Respino M, Gunning FM, Liston C, et al. Functional connectivity of the left DLPFC to striatum predicts treatment response of depression to TMS. Brain Stimul. 2017;10:919–25.

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Eshel N, Keller CJ, Wu W, Jiang J, Mills-Finnerty C, Huemer J, et al. Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation. Neuropsychopharmacology. 2020;45:1018–25.

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF, et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol Psychiatry. 2018;84:28–37.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012;72:595–603.

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Cash RFH, Cocchi L, Lv J, Fitzgerald PB, Zalesky A. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry. 2021;78:337–9.

  85. 85.

    Carmi L, Tendler A, Bystritsky A, Hollander E, Blumberger DM, Daskalakis J, et al. Efficacy and safety of deep transcranial magnetic stimulation for obsessive-compulsive disorder: a prospective multicenter randomized double-blind placebo-controlled trial. Am J Psychiatry. 2019;176:931–8.

    PubMed  Article  Google Scholar 

  86. 86.

    Popa T, Morris LS, Hunt R, Deng Z-D, Horovitz S, Mente K, et al. Modulation of resting connectivity between the mesial frontal cortex and basal ganglia. Front Neurol. 2019;10:587.

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Dunlop K, Woodside B, Olmsted M, Colton P, Giacobbe P, Downar J. Reductions in cortico-striatal hyperconnectivity accompany successful treatment of obsessive-compulsive disorder with dorsomedial prefrontal rTMS. Neuropsychopharmacology. 2016;41:1395–403.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Downar J, Daskalakis ZJ. New targets for rTMS in depression: a review of convergent evidence. Brain Stimul. 2013;6:231–40.

    PubMed  Article  Google Scholar 

  89. 89.

    Downar J, Geraci J, Salomons TV, Dunlop K, Wheeler S, McAndrews MP, et al. Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression. Biol Psychiatry. 2014;76:176–85.

    PubMed  Article  Google Scholar 

  90. 90.

    Salomons TV, Dunlop K, Kennedy SH, Flint A, Geraci J, Giacobbe P, et al. Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychopharmacology. 2014;39:488–98.

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Cho SS, Strafella AP. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One. 2009;4:e6725.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci. 2001;21:RC157.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Dowdle LT, Brown TR, George MS, Hanlon CA. Single pulse TMS to the DLPFC, compared to a matched sham control, induces a direct, causal increase in caudate, cingulate, and thalamic BOLD signal. Brain Stimul. 2018;11:789–96.

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Leuchter AF, Cook IA, Feifel D, Goethe JW, Husain M, Carpenter LL, et al. Efficacy and safety of low-field synchronized transcranial magnetic stimulation (sTMS) for treatment of major depression. Brain Stimul. 2015;8:787–94.

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Deng Z-D, Lisanby SH. Electric field characteristics of low-field synchronized transcranial magnetic stimulation (sTMS). Ann Int Conf IEEE Eng Med Biol Soc. 2017;2017:1445–8.

  96. 96.

    Cook IA, Wilson AC, Corlier J, Leuchter AF. Brain activity and clinical outcomes in adults With depression treated With synchronized transcranial magnetic stimulation: an exploratory study. Neuromodulation. 2019;22:894–7.

    PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Zrenner B, Zrenner C, Gordon PC, Belardinelli P, McDermott EJ, Soekadar SR, et al. Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimul. 2020;13:197–205.

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Donse L, Padberg F, Sack AT, Rush AJ, Arns M. Simultaneous rTMS and psychotherapy in major depressive disorder: clinical outcomes and predictors from a large naturalistic study. Brain Stimul. 2018;11:337–45.

    PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Neacsiu AD, Luber BM, Davis SW, Bernhardt E, Strauman TJ, Lisanby SH. On the concurrent use of self-system therapy and functional magnetic resonance imaging-guided transcranial magnetic stimulation as treatment for depression. J ECT. 2018;34:266–73.

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949.

  101. 101.

    Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage. 2014;85:961–70. Pt 3.

    PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Brady ROJ, Gonsalvez I, Lee I, Öngür D, Seidman LJ, Schmahmann JD, et al. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am J Psychiatry. 2019;176:512–20.

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Owen AM, Evans AC, Petrides M. Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb Cortex. 1996;6:31–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Blumenfeld RS, Ranganath C. Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist. 2007;13:280–91.

    PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Wang WC, Wing EA, Murphy DLK, Luber BM, Lisanby SH, Cabeza R, et al. Excitatory TMS modulates memory representations. Cogn Neurosci. 2018;9:151–66.

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Beynel L, Davis SW, Crowell CA, Hilbig SA, Lim W, Nguyen D, et al. Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: a randomized within-subject comparison. PLoS One. 2019;14:e0213707.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Cui H, Ren R, Lin G, Zou Y, Jiang L, Wei Z, et al. Repetitive transcranial magnetic stimulation induced hypoconnectivity within the default mode network yields cognitive improvements in amnestic mild cognitive impairment: a randomized controlled study. J Alzheimers Dis. 2019;69:1137–51.

    PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng Z-D, et al. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimul. 2018;11:465–80.

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17:37–53.

    PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Ali MM, Sellers KK, Fröhlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci. 2013;33:11262–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Fregni F, El-Hagrassy MM, Pacheco-Barris K, Carvalho S, Leite J, Simis M, et al. Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation (tDCS) in neurological and psychiatric disorders. Int J Neuropsychopharmacol. 2021;24:256–313.

  112. 112.

    Suen PJC, Doll S, Batistuzzo MC, Busatto G, Razza LB, Padberg F, et al. Association between tDCS computational modeling and clinical outcomes in depression: data from the ELECT‑TDCS trial. Eur Arch psychiatry Clin Neurosci. 2021;271:101–10.

    PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Alexander ML, Alagapan S, Lugo CE, Mellin JM, Lustenberger C, Rubinow DR, et al. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl Psychiatry. 2019;9:106.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 114.

    Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;11:203–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Mourdoukoutas AP, Truong DQ, Adair DK, Simon BJ, Bikson M. High-resolution multi-scale computational model for non-invasive cervical vagus nerve stimulation. Neuromodulation. 2018;21:261–8.

    PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Rong P, Liu J, Wang L, Liu R, Fang J, Zhao J, et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J Affect Disord. 2016;195:172–9.

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Silberstein SD, Mechtler LL, Kudrow DB, Calhoun AH, McClure C, Saper JR, et al. Non-invasive vagus nerve stimulation for the ACute Treatment of Cluster Headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache. 2016;56:1317–32.

    PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Fang J, Rong P, Hong Y, Fan Y, Liu J, wang H, et al. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry. 2016;79:266–73.

    PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    DeGiorgio CM, Soss J, Cook IA, Markovic D, Gornbein J, Murray D, et al. Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology. 2013;80:786–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Cook IA, Schrader LM, DeGiorgio CM, Miller PR, Maremont ER, Leuchter AF. Trigeminal nerve stimulation in major depressive disorder: acute outcomes in an open pilot study. Epilepsy Behav. 2013;28:221–6.

    PubMed  Article  Google Scholar 

  121. 121.

    Russo A, Tessitore A, Esposito F, Di Nardo F, Silvestro M, Trojsi F, et al. Functional changes of the perigenual part of the anterior cingulate cortex after external trigeminal neurostimulation in migraine patients. Front Neurol. 2017;8:282.

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Magis D, D’Ostillo K, Thibaut A, De Pasqua V, Gerard P, Hustinx R, et al. Cerebral metabolism before and after external trigeminal nerve stimulation in episodic migraine. Cephalagia. 2017;37:881–91.

    Article  Google Scholar 

  123. 123.

    Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobio B. 2005;81:98–106.

    CAS  Article  Google Scholar 

  124. 124.

    Wong-Riley MTT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280:4761–71.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Rojas JC, Bruchey AK, Gonzalez-Lima F. Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis. 2012;32:741–52.

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Tian F, Hase SN, Gonzalez-Lima F, Liu H. Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg Med. 2016;48:343–9.

    PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Barrett DW, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience. 2013;230:13–23.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Blanco NJ, Maddox WT, Gonzalez-Lima F. Improving executive function using transcranial infrared laser stimulation. J Neuropsychol. 2017;11:14–25.

    PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Blanco NJ, Saucedo CL, Gonzalez-Lima F. Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans. Neurobiol Learn Mem. 2017;139:69–75.

    PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct. 2009;5:46.

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Disner SG, Beevers CG, Gonzalez-Lima F. Transcranial laser stimulation as neuroenhancement for attention bias modification in adults with elevated depression symptoms. Brain Stimul. 2016;9:780–7.

    PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Bystritsky A, Korb AS, Douglas PK, Cohen MS, Melega WP, Mulgaonkar AP, et al. A review of low-intensity focused ultrasound pulsation. Brain Stimul. 2011;4:125–36.

    PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Gavrilov LR, Tsirulnikov EM, Davies IA. Application of focused ultrasound for the stimulation of neural structures. Ultrasound Med Biol. 1996;22:179–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Ai L, Bansal P, Mueller JK, Legon W. Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI: a pilot study. BMC Neurosci. 2018;19:56.

    PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Ai L, Mueller JK, Grant A, Eryaman Y, Legon W. Transcranial focused ultrasound for BOLD fMRI signal modulation in humans. Ann Int Conference IEEE Eng Med Biol Soc. 2016 Aug;2016:1758–61.

  136. 136.

    Sanguinetti JL, Hameroff S, Smith EE, Sato T, Daft CM, Tyler WJ, et al. Transcranial focused ultrasound to the right prefrontal cortex improves mood and alters functional connectivity in humans. Front Hum Neurosci. 2020;14:52.

    PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2009;213:93–118.

    Article  Google Scholar 

  138. 138.

    Hameroff S, Trakas M, Duffield C, Annabi E, Gerace MB, Boyle P, et al. Transcranial ultrasound effects on mental state: a pilot study. Brain Stimul. 2013;6:409–15.

    PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W, Lisanby SH, et al. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 2012;5:435–53.

    PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Koroshetz W, Gordon J, Adams A, Beckel-Mitchener A, Churchill J, Farber G, et al. The state of the NIH BRAIN initiative. J Neurosci. 2018;38:6427–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Goetz SM, Luber B, Lisanby SH, Murphy DL, Kozyrkov IC, Grill WM, et al. Enhancement of neuromodulation with novel pulse shapes generated by controllable pulse parameter transcranial magnetic stimulation. Brain Stimul. 2016;9:39–47.

    PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Halawa I, Shirota Y, Neef A, Sommer M, Paulus W. Neuronal tuning: selective targeting of neuronal populations via manipulation of pulse width and directionality. Brain Stimul. 2019;12:1244–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Kallioniemi E, McClintock SM, Deng Z-D, Husain MM, Lisanby SH. Magnetic seizure therapy: towards personalized seizure therapy for major depression. Personalized Med Psychiatry. 2019;17-18:37–42.

    Article  Google Scholar 

  144. 144.

    Wang JB, Di Ianni T, Vyas DB, Huang Z, Park S, Hosseini-Nassab N, et al. Focused ultrasound for noninvasive, focal pharmacologic neurointervention. Front Neurosci. 2020;14:675.

    PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Luber BM, Davis SW, Bernhardt E, Neacsiu A, Kwapil L, Lisanby SH, et al. Using neuroimaging to individualize TMS treatment for depression: toward a new paradigm for imaging-guided intervention. Neuroimage. 2017;148:1–7.

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing and editing, and approved the final version of the paper. ZDD performed the computational modeling and created the figures.

Corresponding author

Correspondence to Sarah H. Lisanby.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Regenold, W.T., Deng, ZD. & Lisanby, S.H. Noninvasive neuromodulation of the prefrontal cortex in mental health disorders. Neuropsychopharmacol. (2021). https://doi.org/10.1038/s41386-021-01094-3

Download citation

Search

Quick links