Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cognitive effects of focal neuromodulation in neurological and psychiatric disorders

Abstract

Focal direct-to-brain neuromodulation approaches, such as repetitive transcranial magnetic stimulation (TMS), deep brain stimulation (DBS) and ablative techniques, hold tremendous therapeutic promise for challenging-to-treat neurological and psychiatric disorders. These interventions modulate brain circuits that contribute to clinical symptoms and overlap with the networks that support cognition. Depending on the reason for the intervention — whether it aims to improve clinical symptoms or cognitive symptoms — focal neuromodulation techniques might indirectly or directly affect cognitive processes. In this Review, we examine the effects of repetitive TMS, DBS and ablative techniques on post-intervention cognition in patients with psychiatric disorders (major depressive disorder, obsessive–compulsive disorder and schizophrenia) and neurological conditions (Parkinson disease, essential tremor and Alzheimer disease). Our findings indicate that focal neuromodulation is generally safe from a cognitive standpoint and, in some cases, can improve aspects of cognition. We conclude with methodological recommendations aimed at advancing our knowledge of the cognitive effects associated with focal neuromodulation approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuromodulation techniques.
Fig. 2: Targets for repetitive transcranial magnetic stimulation.
Fig. 3: Targets for deep brain stimulation.
Fig. 4: Targets for ablative techniques.

Similar content being viewed by others

References

  1. Fox, M. D. et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl Acad. Sci. 111, E4367–E4375 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Quadri, S. A. et al. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg. Focus 44, E16 (2018).

    Article  PubMed  Google Scholar 

  4. Neuromodulation: an emerging field. Scope of neuromodulation advances https://www.neuromodulation.com/medical-therapy-overview (International Neuromodulation Society, 2016).

  5. Luan, S., Williams, I., Nikolic, K. & Constandinou, T. G. Neuromodulation: present and emerging methods. Front. Neuroeng. 7, 27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association, 2013).

  7. LeMoult, J. & Gotlib, I. H. Depression: a cognitive perspective. Clin. Psychol. Rev. 69, 51–66 (2019).

    Article  PubMed  Google Scholar 

  8. McIntyre, R. S. et al. Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depress. Anxiety 30, 515–527 (2013).

    Article  PubMed  Google Scholar 

  9. Rush, A. J. et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiat. 163, 1905–1917 (2006).

    Article  PubMed  Google Scholar 

  10. Chamberlain, S. R., Blackwell, A. D., Fineberg, N. A., Robbins, T. W. & Sahakian, B. J. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev. 29, 399–419 (2005).

    Article  PubMed  Google Scholar 

  11. Abramovitch, A., Abramowitz, J. S. & Mittelman, A. The neuropsychology of adult obsessive-compulsive disorder: a meta-analysis. Clin. Psychol. Rev. 33, 1163–1171 (2013).

    Article  PubMed  Google Scholar 

  12. Krzyszkowiak, W., Kuleta-Krzyszkowiak, M. & Krzanowska, E. Treatment of obsessive-compulsive disorders (OCD) and obsessive-compulsive-related disorders (OCRD). Psychiat. Pol. 53, 825–843 (2019).

    Article  Google Scholar 

  13. de Araújo, A. N., de Sena, E. P., de Oliveira, I. R. & Juruena, M. F. Antipsychotic agents: efficacy and safety in schizophrenia. Drug Healthc. Patient Saf. 4, 173–180 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. Green, M. F., Kern, R. S. & Heaton, R. K. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr. Res. 72, 41–51 (2004).

    Article  PubMed  Google Scholar 

  15. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).

    Article  PubMed  Google Scholar 

  16. Aarsland, D. et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology 75, 1062–1069 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bastide, M. F. et al. Pathophysiology of l-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog. Neurobiol. 132, 96–168 (2015).

    Article  PubMed  Google Scholar 

  18. Rascol, O. et al. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N. Engl. J. Med. 342, 1484–1491 (2000).

    Article  PubMed  Google Scholar 

  19. Bhatia, K. P. et al. Consensus statement on the classification of tremors. From the task force on tremor of the International Parkinson and Movement Disorder Society. Mov. Disord. 33, 75–87 (2018).

    Article  PubMed  Google Scholar 

  20. Chandran, V. & Pal, P. K. Essential tremor: beyond the motor features. Parkinsonism Relat. Disord. 18, 407–413 (2012).

    Article  PubMed  Google Scholar 

  21. Louis, E. D. Non-motor symptoms in essential tremor: a review of the current data and state of the field. Parkinsonism Relat. Disord. 22, S115–S118 (2016).

    Article  PubMed  Google Scholar 

  22. Kwon, K.-Y., Lee, H. M., Lee, S.-M., Kang, S. H. & Koh, S.-B. Comparison of motor and non-motor features between essential tremor and tremor dominant Parkinson’s disease. J. Neurol. Sci. 361, 34–38 (2016).

    Article  PubMed  Google Scholar 

  23. Zesiewicz, T. A. et al. Evidence-based guideline update: treatment of essential tremor: report of the Quality Standards subcommittee of the American Academy of Neurology. Neurology 77, 1752–1755 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nichols, E. et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88–106 (2019).

    Article  Google Scholar 

  25. Weintraub, S., Wicklund, A. H. & Salmon, D. P. The neuropsychological profile of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006171 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Atri, A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med. Clin. North. Am. 103, 263–293 (2019).

    Article  PubMed  Google Scholar 

  27. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article  PubMed  Google Scholar 

  28. Fitzgerald, P. B., Fountain, S. & Daskalakis, Z. J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin. Neurophysiol. 117, 2584–2596 (2006).

    Article  PubMed  Google Scholar 

  29. Suppa, A. et al. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 9, 323–335 (2016).

    Article  PubMed  Google Scholar 

  30. Zangen, A., Roth, Y., Voller, B. & Hallett, M. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin. Neurophysiol. 116, 775–779 (2005).

    Article  PubMed  Google Scholar 

  31. Bonelli, R. M. & Cummings, J. L. Frontal-subcortical circuitry and behavior. Dialog. Clin. Neurosci. 9, 141–151 (2007).

    Article  Google Scholar 

  32. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiat. 72, 595–603 (2012).

    Article  PubMed  Google Scholar 

  33. Tekin, S. & Cummings, J. L. Frontal–subcortical neuronal circuits and clinical neuropsychiatry an update. J. Psychosom. Res. 53, 647–654 (2002).

    Article  PubMed  Google Scholar 

  34. Panikratova, Y. R. et al. Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions. Int. J. Psychophysiol. 151, 70–79 (2020).

    Article  PubMed  Google Scholar 

  35. Stuss, D. T. & Levine, B. Adult clinical neuropsychology: lessons from studies of the frontal lobes. Annu. Rev. Psychol. 53, 401–433 (2002).

    Article  PubMed  Google Scholar 

  36. Rossi, S. et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berlim, M. T., den Eynde, F. V. & Daskalakis, Z. J. A systematic review and meta-analysis on the efficacy and acceptability of bilateral repetitive transcranial magnetic stimulation (rTMS) for treating major depression. Psychol. Med. 43, 2245–2254 (2013).

    Article  PubMed  Google Scholar 

  38. Brunoni, A. R. et al. Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: a systematic review with network meta-analysis. JAMA Psychiat. 74, 143–152 (2017).

    Article  Google Scholar 

  39. Iimori, T. et al. Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer’s disease: a systematic review. Prog. Neuropsychopharmacol. Biol. Psychiat. 88, 31–40 (2019).

    Article  Google Scholar 

  40. Ilieva, I. P. et al. Age-related repetitive transcranial magnetic stimulation effects on executive function in depression: a systematic review. Am. J. Geriatr. Psychiat. 26, 334–346 (2018).

    Article  Google Scholar 

  41. Martin, D. M., McClintock, S. M., Forster, J. J., Lo, T. Y. & Loo, C. K. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: a systematic review and meta-analysis of individual task effects. Depress. Anxiety 34, 1029–1039 (2017).

    Article  PubMed  Google Scholar 

  42. Asl, F. A. & Vaghef, L. The effectiveness of high-frequency left DLPFC-rTMS on depression, response inhibition, and cognitive flexibility in female subjects with major depressive disorder. J. Psychiat. Res. 149, 287–292 (2022).

    Article  Google Scholar 

  43. Corlier, J. et al. Effect of repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD) on cognitive control. J. Affect. Disord. 265, 272–277 (2020).

    Article  PubMed  Google Scholar 

  44. Zheng, H. et al. Abnormal anterior cingulate N-acetylaspartate and executive functioning in treatment-resistant depression after rTMS therapy. Int. J. Neuropsychopharmacol. 18, yv059 (2015).

    Article  Google Scholar 

  45. Hoy, K. E., Segrave, R. A., Daskalakis, Z. J. & Fitzgerald, P. B. Investigating the relationship between cognitive change and antidepressant response following rTMS: a large scale retrospective study. Brain Stimul. 5, 539–546 (2012).

    Article  PubMed  Google Scholar 

  46. Latif, A. A. et al. A randomized study comparing the short-term neurocognitive outcome of electroconvulsive therapy versus repetitive transcranial magnetic stimulation in the treatment of patients with depression. J. Psychiat. Pract. 26, 23–36 (2020).

    Article  Google Scholar 

  47. Martis, B. et al. Neurocognitive effects of repetitive transcranial magnetic stimulation in severe major depression. Clin. Neurophysiol. 114, 1125–1132 (2003).

    Article  PubMed  Google Scholar 

  48. Fabre, I. et al. Antidepressant efficacy and cognitive effects of repetitive transcranial magnetic stimulation in vascular depression: an open trial. Int. J. Geriatr. Psychiat. 19, 833–842 (2004).

    Article  Google Scholar 

  49. Fitzgerald, P. B., Hoy, K., Daskalakis, Z. J. & Kulkarni, J. A randomized trial of the anti-depressant effects of low- and high-frequency transcranial magnetic stimulation in treatment-resistant depression. Depress. Anxiety 26, 229–234 (2009).

    Article  PubMed  Google Scholar 

  50. Furtado, C. P. et al. An investigation of medial temporal lobe changes and cognition following antidepressant response: a prospective rTMS study. Brain Stimul. 6, 346–354 (2013).

    Article  PubMed  Google Scholar 

  51. Kavanaugh, B. C. et al. Neurocognitive effects of repetitive transcranial magnetic stimulation with a 2-coil device in treatment-resistant major depressive disorder. J. ECT 34, 258–265 (2018).

    Article  PubMed  Google Scholar 

  52. Schulze-Rauschenbach, S. C. et al. Distinctive neurocognitive effects of repetitive transcranial magnetic stimulation and electroconvulsive therapy in major depression. Br. J. Psychiat. 186, 410–416 (2005).

    Article  Google Scholar 

  53. Hausmann, A. et al. No deterioration of cognitive performance in an aggressive unilateral and bilateral antidepressant rTMS add-on trial. J. Clin. Psychiat. 65, 4293 (2004).

    Article  Google Scholar 

  54. Höppner, J. et al. Antidepressant efficacy of two different rTMS procedures. High frequency over left versus low frequency over right prefrontal cortex compared with sham stimulation. Eur. Arch. Psychiat. Clin. Neurosci. 253, 103–109 (2003).

    Article  Google Scholar 

  55. Januel, D. et al. A double-blind sham controlled study of right prefrontal repetitive transcranial magnetic stimulation (rTMS): therapeutic and cognitive effect in medication free unipolar depression during 4 weeks. Prog. Neuropsychopharmacol. Biol. Psychiat. 30, 126–130 (2006).

    Article  Google Scholar 

  56. Jorge, R. E. et al. Repetitive transcranial magnetic stimulation as treatment of poststroke depression: a preliminary study. Biol. Psychiat. 55, 398–405 (2004).

    Article  PubMed  Google Scholar 

  57. Mosimann, U. P. et al. Repetitive transcranial magnetic stimulation: a putative add-on treatment for major depression in elderly patients. Psychiat. Res. 126, 123–133 (2004).

    Article  Google Scholar 

  58. Speer, A. M. et al. Lack of adverse cognitive effects of 1 Hz and 20 Hz repetitive transcranial magnetic stimulation at 100% of motor threshold over left prefrontal cortex in depression. J. ECT 17, 259–263 (2001).

    Article  PubMed  Google Scholar 

  59. Ullrich, H., Kranaster, L., Sigges, E., Andrich, J. & Sartorius, A. Ultra-high-frequency left prefrontal transcranial magnetic stimulation as augmentation in severely ill patients with depression: a naturalistic sham-controlled, double-blind, randomized trial. Neuropsychobiology 66, 141–148 (2012).

    Article  PubMed  Google Scholar 

  60. Wajdik, C. et al. No change in neuropsychological functioning after receiving repetitive transcranial magnetic stimulation (TMS) treatment for major depression. J. ECT 30, 320 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cheng, C.-M. et al. Different forms of prefrontal theta burst stimulation for executive function of medication- resistant depression: evidence from a randomized sham-controlled study. Prog. Neuropsychopharmacol. Biol. Psychiat. 66, 35–40 (2015).

    Article  Google Scholar 

  62. Cole, E. J. et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am. J. Psychiat. 177, 716–726 (2020).

    Article  PubMed  Google Scholar 

  63. Cole, E. J. et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am. J. Psychiat. 179, 132–141 (2022).

    Article  PubMed  Google Scholar 

  64. Cristancho, P. et al. iTBS to relieve depression and executive dysfunction in older adults: an open label study. Am. J. Geriatr. Psychiat. 28, 1195–1199 (2020).

    Article  Google Scholar 

  65. Fitzgerald, P. B., Chen, L., Richardson, K., Daskalakis, Z. J. & Hoy, K. E. A pilot investigation of an intensive theta burst stimulation protocol for patients with treatment resistant depression. Brain Stimul. 13, 137–144 (2020).

    Article  PubMed  Google Scholar 

  66. Isserles, M. et al. Cognitive–emotional reactivation during deep transcranial magnetic stimulation over the prefrontal cortex of depressive patients affects antidepressant outcome. J. Affect. Disord. 128, 235–242 (2011).

    Article  PubMed  Google Scholar 

  67. Levkovitz, Y. et al. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul. 2, 188–200 (2009).

    Article  PubMed  Google Scholar 

  68. Naim-Feil, J. et al. Neuromodulation of attentional control in major depression: a pilot deepTMS study. Neural Plast. 2016, 5760141 (2016).

    Article  PubMed  Google Scholar 

  69. Kaster, T. S. et al. Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: a prospective randomized controlled trial. Neuropsychopharmacology 43, 2231 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Matsuda, Y., Kito, S., Igarashi, Y. & Shigeta, M. Efficacy and safety of deep transcranial magnetic stimulation in office workers with treatment-resistant depression: a randomized, double-blind, sham-controlled trial. Neuropsychobiology 79, 208–213 (2020).

    Article  PubMed  Google Scholar 

  71. Bailey, N. W. et al. Responders to rTMS for depression show increased fronto-midline theta and theta connectivity compared to non-responders. Brain Stimul. 11, 190–203 (2018).

    Article  PubMed  Google Scholar 

  72. Rostami, R. et al. Cold cognition as predictor of treatment response to rTMS; a retrospective study on patients with unipolar and bipolar depression. Front. Hum. Neurosci. 16, 888472 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ozcan, S., Gica, S. & Gulec, H. Suicidal behavior in treatment resistant major depressive disorder patients treated with transmagnetic stimulation(TMS) and its relationship with cognitive functions. Psychiat. Res. 286, 112873 (2020).

    Article  Google Scholar 

  74. Carmi, L. et al. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimul. 11, 158–165 (2018).

    Article  PubMed  Google Scholar 

  75. Del Casale, A. et al. Functional neuroimaging in obsessive-compulsive disorder. Neuropsychobiology 64, 61–85 (2011).

    Article  PubMed  Google Scholar 

  76. Modirrousta, M., Meek, B. P., Sareen, J. & Enns, M. W. Impaired trial-by-trial adjustment of cognitive control in obsessive compulsive disorder improves after deep repetitive transcranial magnetic stimulation. BMC Neurosci. 16, 63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jahangard, L. et al. Repetitive transcranial magnetic stimulation improved symptoms of obsessive-compulsive disorder, but also cognitive performance: results from a randomized clinical trial with a cross-over design and sham condition. Neuropsychobiology 73, 224–232 (2016).

    Article  PubMed  Google Scholar 

  78. Shayganfard, M. et al. Repetitive transcranial magnetic stimulation improved symptoms of obsessive-compulsive disorders but not executive functions: results from a randomized clinical trial with crossover design and sham condition. Neuropsychobiology 74, 115–124 (2016).

    Article  PubMed  Google Scholar 

  79. Sachdev, P. S., Loo, C. K., Mitchell, P. B., McFarquhar, T. F. & Malhi, G. S. Repetitive transcranial magnetic stimulation for the treatment of obsessive compulsive disorder: a double-blind controlled investigation. Psychol. Med. 37, 1645–1649 (2007).

    Article  PubMed  Google Scholar 

  80. Gomes, P. V. O., Brasil-Neto, J. P., Allam, N. & Rodrigues de Souza, E. A randomized, double-blind trial of repetitive transcranial magnetic stimulation in obsessive-compulsive disorder with three-month follow-up. J. Neuropsychiat. Clin. Neurosci. 24, 437–443 (2012).

    Article  Google Scholar 

  81. Guo, Q. et al. Continuous theta burst stimulation over the bilateral supplementary motor area in obsessive-compulsive disorder treatment: a clinical randomized single-blind sham-controlled trial. Eur. Psychiat. 65, e64 (2022).

    Article  Google Scholar 

  82. Mittrach, M. et al. The tolerability of rTMS treatment in schizophrenia with respect to cognitive function. Pharmacopsychiatry 43, 110–117 (2010).

    Article  PubMed  Google Scholar 

  83. Li, J., Cao, X., Liu, S., Li, X. & Xu, Y. Efficacy of repetitive transcranial magnetic stimulation on auditory hallucinations in schizophrenia: a meta-analysis. Psychiat. Res. 290, 113141 (2020).

    Article  Google Scholar 

  84. Green, M. F., Kern, R. S., Braff, D. L. & Mintz, J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the ‘right stuff’? Schizophr. Bull. 26, 119–136 (2000).

    Article  PubMed  Google Scholar 

  85. Bidzinski, K. K. et al. Investigating repetitive transcranial magnetic stimulation on cannabis use and cognition in people with schizophrenia. Schizophrenia 8, 2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Barr, M. S., Farzan, F., Tran, L. C., Fitzgerald, P. B. & Daskalakis, Z. J. A randomized controlled trial of sequentially bilateral prefrontal cortex repetitive transcranial magnetic stimulation in the treatment of negative symptoms in schizophrenia. Brain Stimul. 5, 337–346 (2012).

    Article  PubMed  Google Scholar 

  87. Guan, H. Y. et al. High-frequency neuronavigated rTMS effect on clinical symptoms and cognitive dysfunction: a pilot double-blind, randomized controlled study in veterans with schizophrenia. Transl. Psychiat. 10, 79 (2020).

    Article  Google Scholar 

  88. Mogg, A. et al. Repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: a randomized controlled pilot study. Schizophr. Res. 93, 221–228 (2007).

    Article  PubMed  Google Scholar 

  89. Dlabac-de Lange, J. J. et al. Efficacy of bilateral repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: results of a multicenter double-blind randomized controlled trial. Psychol. Med. 45, 1263–1275 (2015).

    Article  PubMed  Google Scholar 

  90. Wolwer, W. et al. Repetitive transcranial magnetic stimulation (rTMS) improves facial affect recognition in schizophrenia. Brain Stimul. 7, 559–563 (2014).

    Article  PubMed  Google Scholar 

  91. Francis, M. M. et al. Cognitive effects of bilateral high frequency repetitive transcranial magnetic stimulation in early phase psychosis: a pilot study. Brain Imaging Behav. 13, 852–861 (2019).

    Article  PubMed  Google Scholar 

  92. Fitzgerald, P. B. et al. A study of the effectiveness of bilateral transcranial magnetic stimulation in the treatment of the negative symptoms of schizophrenia. Brain Stimul. 1, 27–32 (2008).

    Article  PubMed  Google Scholar 

  93. Barr, M. S. et al. The effect of repetitive transcranial magnetic stimulation on gamma oscillatory activity in schizophrenia. PLoS One 6, e22627 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rabany, L., Deutsch, L. & Levkovitz, Y. Double-blind, randomized sham controlled study of deep-TMS add-on treatment for negative symptoms and cognitive deficits in schizophrenia. J. Psychopharmacol. 28, 686–690 (2014).

    Article  PubMed  Google Scholar 

  95. Zhuo, K. et al. Repetitive transcranial magnetic stimulation as an adjunctive treatment for negative symptoms and cognitive impairment in patients with schizophrenia: a randomized, double-blind, sham-controlled trial. Neuropsychiat. Dis. Treat. 15, 1141 (2019).

    Article  Google Scholar 

  96. Hasan, A. et al. Cognitive effects of high-frequency rTMS in schizophrenia patients with predominant negative symptoms: results from a multicenter randomized sham-controlled trial. Schizophr. Bull. 42, 608–618 (2016).

    Article  PubMed  Google Scholar 

  97. Holi, M. M. et al. Left prefrontal repetitive transcranial magnetic stimulation in schizophrenia. Schizophr. Bull. 30, 429–434 (2004).

    Article  PubMed  Google Scholar 

  98. Voineskos, A. N. et al. Effects of repetitive transcranial magnetic stimulation on working memory performance and brain structure in people with schizophrenia spectrum disorders: a double-blind, randomized, sham-controlled trial. Biol. Psychiat. Cogn. Neurosci. Neuroimaging 6, 449–458 (2020).

    Google Scholar 

  99. Thirthalli, J. et al. Randomized, sham-controlled trial of transcranial magnetic stimulation augmentation of cognitive remediation in schizophrenia. Schizophr. Res. 241, 63–65 (2022).

    Article  PubMed  Google Scholar 

  100. Zhao, J. et al. Effects of theta burst stimulation mode repetitive transcranial magnetic stimulation on negative symptoms and cognitive function in elderly patients with chronic schizophrenia. Chin. J. Behav. Med. Brain Sci. 30, 577–583 (2021).

    Google Scholar 

  101. Wang, L. et al. Intermittent theta burst stimulation improved visual-spatial working memory in treatment-resistant schizophrenia: a pilot study. J. Psychiat. Res. 149, 44–53 (2022).

    Article  PubMed  Google Scholar 

  102. Gan, H. et al. High frequency repetitive transcranial magnetic stimulation of dorsomedial prefrontal cortex for negative symptoms in patients with schizophrenia: a double-blind, randomized controlled trial. Psychiat. Res. 299, 113876 (2021).

    Article  Google Scholar 

  103. Dierks, T. et al. Activation of Heschl’s gyrus during auditory hallucinations. Neuron 22, 615–621 (1999).

    Article  PubMed  Google Scholar 

  104. Jardri, R., Pouchet, A., Pins, D. & Thomas, P. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am. J. Psychiat. 168, 73–81 (2011).

    Article  PubMed  Google Scholar 

  105. Marzouk, T., Winkelbeiner, S., Azizi, H., Malhotra, A. K. & Homan, P. Transcranial magnetic stimulation for positive symptoms in schizophrenia: a systematic review. Neuropsychobiology 79, 384–396 (2020).

    Article  PubMed  Google Scholar 

  106. Xie, Y. et al. Cerebral blood flow changes in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Eur. Arch. Psychiat. Clin. Neurosci. 273, 1851–1861 (2023).

    Article  Google Scholar 

  107. Blumberger, D. M. et al. MRI-targeted repetitive transcranial magnetic stimulation of Heschl’s gyrus for refractory auditory hallucinations. Brain Stimul. 5, 577–585 (2012).

    Article  PubMed  Google Scholar 

  108. Hoffman, R. E. et al. Transcranial magnetic stimulation of Wernicke’s and right homologous sites to curtail “voices”: a randomized trial. Biol. Psychiat. 73, 1008–1014 (2013).

    Article  PubMed  Google Scholar 

  109. Hoffman, R. E. et al. Temporoparietal transcranial magnetic stimulation for auditory hallucinations: safety, efficacy and moderators in a fifty patient sample. Biol. Psychiat. 58, 97–104 (2005).

    Article  PubMed  Google Scholar 

  110. Fitzgerald, P. B. et al. A double-blind sham-controlled trial of repetitive transcranial magnetic stimulation in the treatment of refractory auditory hallucinations. J. Clin. Psychopharmacol. 25, 358 (2005).

    Article  PubMed  Google Scholar 

  111. McIntosh, A. M. et al. Transcranial magnetic stimulation for auditory hallucinations in schizophrenia. Psychiat. Res. 127, 9–17 (2004).

    Article  Google Scholar 

  112. Elahi, B., Elahi, B. & Chen, R. Effect of transcranial magnetic stimulation on Parkinson motor function — systematic review of controlled clinical trials. Mov. Disord. 24, 357–363 (2009).

    Article  PubMed  Google Scholar 

  113. Goodwill, A. M. et al. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson’s disease: a systematic review and meta-analysis. Sci. Rep. 7, 14840 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Xie, C.-L. et al. Repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression in Parkinson disease: a meta-analysis of randomized controlled clinical trials. Neurol. Sci. 36, 1751–1761 (2015).

    Article  PubMed  Google Scholar 

  115. Deng, S. et al. Effects of repetitive transcranial magnetic stimulation on gait disorders and cognitive dysfunction in Parkinson’s disease: a systematic review with meta-analysis. Brain Behav. 12, e2697 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. He, P. K. et al. Repetitive transcranial magnetic stimulation (rTMS) fails to improve cognition in patients with Parkinson’s disease: a meta-analysis of randomized controlled trials. Int. J. Neurosci. 132, 269–282 (2020).

    Article  PubMed  Google Scholar 

  117. Jiang, Y., Guo, Z., McClure, M. A., He, L. & Mu, Q. Effect of rTMS on Parkinson’s cognitive function: a systematic review and meta-analysis. BMC Neurol. 20, 377 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cheng, T.-C. et al. Integration of virtual reality into transcranial magnetic stimulation improves cognitive function in patients with Parkinson’s disease with cognitive impairment: a proof-of-concept study. J. Parkinsons Dis. 12, 723–736 (2022).

    Article  PubMed  Google Scholar 

  119. Pal, E., Nagy, F., Aschermann, Z., Balazs, E. & Kovacs, N. The impact of left prefrontal repetitive transcranial magnetic stimulation on depression in Parkinson’s disease: a randomized, double‐blind, placebo‐controlled study. Mov. Disord. 25, 2311–2317 (2010).

    Article  PubMed  Google Scholar 

  120. Zhuang, S. et al. Low-frequency repetitive transcranial magnetic stimulation over right dorsolateral prefrontal cortex in Parkinson’s disease. Parkinsons Dis. 2020, 7295414 (2020).

    PubMed  PubMed Central  Google Scholar 

  121. He, W., Wang, J.-C. & Tsai, P.-Y. Theta burst magnetic stimulation improves Parkinson’s-related cognitive impairment: a randomised controlled study. Neurorehabil. Neural Repair. 35, 986–995 (2021).

    Article  PubMed  Google Scholar 

  122. Trung, J. et al. Transcranial magnetic stimulation improves cognition over time in Parkinson’s disease. Parkinsonism Relat. Disord. 66, 3–8 (2019).

    Article  PubMed  Google Scholar 

  123. Chang, W. H. et al. Effect of dual-mode and dual-site noninvasive brain stimulation on freezing of gait in patients with Parkinson disease. Arch. Phys. Med. Rehab. 98, 1283–1290 (2017).

    Article  Google Scholar 

  124. Cohen, O. S. et al. Repetitive deep TMS for Parkinson disease: a 3-month double-blind, randomized sham-controlled study. J. Clin. Neurophysiol. 35, 159–165 (2018).

    Article  PubMed  Google Scholar 

  125. Khedr, E. M., Mohamed, K. O., Ali, A. M. & Hasan, A. M. The effect of repetitive transcranial magnetic stimulation on cognitive impairment in Parkinson’s disease with dementia: pilot study. Restor. Neurol. Neurosci. 38, 55–66 (2020).

    PubMed  Google Scholar 

  126. Mi, T.-M. et al. High-frequency rTMS over the supplementary motor area improves freezing of gait in Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat. Disord. 68, 85–90 (2019).

    Article  PubMed  Google Scholar 

  127. Mi, T.-M. et al. Repetitive transcranial magnetic stimulation improves Parkinson’s freezing of gait via normalizing brain connectivity. npj Parkinsons Dis. 6, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Pal, G. et al. Parkinson disease and subthalamic nucleus deep brain stimulation: cognitive effects in GBA mutation carriers. Ann. Neurol. 91, 424–435 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Boggio, P. S. et al. Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov. Disord. 20, 1178–1184 (2005).

    Article  PubMed  Google Scholar 

  130. Ahmed, M. A. et al. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J. Neurol. 259, 83–92 (2012).

    Article  PubMed  Google Scholar 

  131. Drumond Marra, H. L. et al. Transcranial magnetic stimulation to address mild cognitive impairment in the elderly: a randomized controlled study. Behav. Neurol. 2015, 287843 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wu, Y. et al. Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer’s disease: a randomized, double-blind, sham-controlled study. Shanghai Arch. Psychiat. 27, 280 (2015).

    Google Scholar 

  133. Wu, X. et al. Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer’s disease: a randomized controlled trial. Brain Stimul. 15, 35–45 (2021).

    Article  PubMed  Google Scholar 

  134. Cotelli, M. et al. Improved language performance in Alzheimer disease following brain stimulation. J. Neurol. Neurosurg. Psychiat. 82, 794–797 (2010).

    Article  PubMed  Google Scholar 

  135. Li, X. et al. Cortical plasticity is correlated with cognitive improvement in Alzheimer’s disease patients after rTMS treatment. Brain Stimul. 14, 503–510 (2021).

    Article  PubMed  Google Scholar 

  136. Rutherford, G., Lithgow, B. & Moussavi, Z. Short and long-term effects of rTMS treatment on Alzheimer’s disease at different stages: a pilot study. J. Exp. Neurosci. 9, 43–51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Moussavi, Z. et al. Active rTMS not superior to sham for treating cognitive impairment in patients with Alzheimer’s disease. Preprint at https://doi.org/10.21203/rs.3.rs-3147268/v1 (2023).

  138. Turriziani, P. et al. Low-frequency repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex enhances recognition memory in Alzheimer’s disease. J. Alzheimers Dis. 72, 613–622 (2019).

    Article  PubMed  Google Scholar 

  139. Cui, H. et al. Repetitive transcranial magnetic stimulation induced hypoconnectivity within the default mode network yields cognitive improvements in amnestic mild cognitive impairment: a randomized controlled study. J. Alzheimers Dis. 69, 1137–1151 (2019).

    Article  PubMed  Google Scholar 

  140. Cavanna, A. E. & Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006).

    Article  PubMed  Google Scholar 

  141. Koch, G. et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. NeuroImage 169, 302–311 (2018).

    Article  PubMed  Google Scholar 

  142. Koch, G. et al. Precuneus magnetic stimulation for Alzheimer’s disease: a randomized, sham-controlled trial. Brain 145, 3776–3786 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Alcalá-Lozano, R. et al. Similar clinical improvement and maintenance after rTMS at 5 Hz using a simple vs. complex protocol in Alzheimer’s disease. Brain Stimul. 11, 625–627 (2017).

    Article  PubMed  Google Scholar 

  144. Beynel, L. et al. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: a meta-analysis and recommendations for future studies. Neurosci. Biobehav. Rev. 107, 47–58 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chou, Y., Ton That, V. & Sundman, M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 86, 1–10 (2020).

    Article  PubMed  Google Scholar 

  146. Hanlon, C. A. & McCalley, D. M. Sex/gender as a factor that influences transcranial magnetic stimulation treatment outcome: three potential biological explanations. Front. Psychiat. 13, 869070 (2022).

    Article  Google Scholar 

  147. Humanitarian Device Exemption (HDE): Medtronic (Activa) deep brain stimulation for OCD therapy. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfhde/hde.cfm?id=H050003 (US FDA, 2009).

  148. Lozano, A. M. et al. A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. J. Neurosurg. 116, 315–322 (2012).

    Article  PubMed  Google Scholar 

  149. Laxton, A. W. et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann. Neurol. 68, 521–534 (2010).

    Article  PubMed  Google Scholar 

  150. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  PubMed  Google Scholar 

  151. Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).

    Article  PubMed  Google Scholar 

  152. Nestler, E. J. & Carlezon, W. A. The mesolimbic dopamine reward circuit in depression. Biol. Psychiat. 59, 1151–1159 (2006).

    Article  PubMed  Google Scholar 

  153. Wise, R. A. Brain reward circuitry: insights from unsensed incentives. Neuron 36, 229–240 (2002).

    Article  PubMed  Google Scholar 

  154. Malone, D. A. et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiat. 65, 267–275 (2009).

    Article  PubMed  Google Scholar 

  155. Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33, 368–377 (2007).

    Article  PubMed  Google Scholar 

  156. Bergfeld, I. O. et al. Impact of deep brain stimulation of the ventral anterior limb of the internal capsule on cognition in depression. Psychol. Med. 47, 1647–1658 (2017).

    Article  PubMed  Google Scholar 

  157. Fenoy, A. J. et al. A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression. Transl. Psychiat. 8, 111 (2018).

    Article  Google Scholar 

  158. Bewernick, B. H. et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol. Psychiat. 67, 110–116 (2010).

    Article  PubMed  Google Scholar 

  159. Schlaepfer, T. E., Bewernick, B. H., Kayser, S., Mädler, B. & Coenen, V. A. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol. Psychiat. 73, 1204–1212 (2013).

    Article  PubMed  Google Scholar 

  160. Holtzheimer, P. E. et al. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch. Gen. Psychiat. 69, 150–158 (2012).

    Article  PubMed  Google Scholar 

  161. Crowell, A. L. et al. Long-term outcomes of subcallosal cingulate deep brain stimulation for treatment-resistant depression. Am. J. Psychiat. 176, 949–956 (2019).

    Article  PubMed  Google Scholar 

  162. Dougherty, D. D. et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol. Psychiat. 78, 240–248 (2015).

    Article  PubMed  Google Scholar 

  163. Holtzheimer, P. E. et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiat. 4, 839–849 (2017).

    Article  Google Scholar 

  164. Bogod, N. M. et al. Long-term neuropsychological safety of subgenual cingulate gyrus deep brain stimulation for treatment resistant depression. J. Neuropsychiat. Clin. Neurosci. 26, 126–133 (2014).

    Article  Google Scholar 

  165. Kubu, C. S. et al. Cognitive outcome after ventral capsule/ventral striatum stimulation for treatment-resistant major depression. J. Neurol. Neurosurg. Psychiat. 88, 262–265 (2017).

    Article  PubMed  Google Scholar 

  166. McInerney, S. J. et al. Neurocognitive predictors of response in treatment resistant depression to subcallosal cingulate gyrus deep brain stimulation. Front. Hum. Neurosci. 11, 74 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Moreines, J. L., McClintock, S. M., Kelley, M. E., Holtzheimer, P. E. & Mayberg, H. S. Neuropsychological function before and after subcallosal cingulate deep brain stimulation in patients with treatment-resistant depression. Depress. Anxiety 31, 690–698 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Ramasubbu, R. et al. Long versus short pulse width subcallosal cingulate stimulation for treatment-resistant depression: a randomised, double-blind, crossover trial. Lancet Psychiat. 7, 29–40 (2020).

    Article  Google Scholar 

  169. Serra-Blasco, M. et al. Cognitive functioning after deep brain stimulation in subcallosal cingulate gyrus for treatment-resistant depression: an exploratory study. Psychiat. Res. 225, 341–346 (2015).

    Article  Google Scholar 

  170. Widge, A. S. et al. Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nat. Commun. 10, 1536 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Grubert, C. et al. Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: effects of 12-month stimulation. World J. Biol. Psychiat. 12, 516–527 (2011).

    Article  Google Scholar 

  172. Kubu, C. S. et al. Neuropsychological outcome after deep brain stimulation in the ventral capsule/ventral striatum for highly refractory obsessive-compulsive disorder or major depression. Stereotact. Funct. Neurosurg. 91, 374–378 (2013).

    Article  PubMed  Google Scholar 

  173. McNeely, H. E., Mayberg, H. S., Lozano, A. M. & Kennedy, S. H. Neuropsychological impact of Cg25 deep brain stimulation for treatment-resistant depression: preliminary results over 12 months. J. Nerv. Ment. Dis. 196, 405–410 (2008).

    Article  PubMed  Google Scholar 

  174. Riva-Posse, P. et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol. Psychiat. 23, 843–849 (2018).

    Article  Google Scholar 

  175. Alonso, P. et al. Deep brain stimulation for obsessive-compulsive disorder: a meta-analysis of treatment outcome and predictors of response. PLoS One 10, e0133591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Denys, D. et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch. Gen. Psychiat. 67, 1061–1068 (2010).

    Article  PubMed  Google Scholar 

  177. Nuttin, B., Cosyns, P., Demeulemeester, H., Gybels, J. & Meyerson, B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354, 1526 (1999).

    Article  PubMed  Google Scholar 

  178. Chabardès, S. et al. Deep brain stimulation for obsessive-compulsive disorder: subthalamic nucleus target. World Neurosurg. 80, S31.e1–S31.e8 (2013).

    Article  PubMed  Google Scholar 

  179. Mosley, P. E. et al. A randomised, double-blind, sham-controlled trial of deep brain stimulation of the bed nucleus of the stria terminalis for treatment-resistant obsessive-compulsive disorder. Transl. Psychiat. 11, 190 (2021).

    Article  Google Scholar 

  180. Jiménez-Ponce, F. et al. Preliminary study in patients with obsessive-compulsive disorder treated with electrical stimulation in the inferior thalamic peduncle. Oper. Neurosurg. 65, ons203 (2009).

    Article  Google Scholar 

  181. Goodman, W. K. et al. Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design. Biol. Psychiat. 67, 535–542 (2010).

    Article  PubMed  Google Scholar 

  182. Grassi, G. et al. Impulsivity and decision-making in obsessive-compulsive disorder after effective deep brain stimulation or treatment as usual. CNS Spectr. 23, 333–339 (2018).

    Article  PubMed  Google Scholar 

  183. Huff, W. et al. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: outcomes after one year. Clin. Neurol. Neurosurg. 112, 137–143 (2010).

    Article  PubMed  Google Scholar 

  184. Barcia, J. A. et al. Personalized striatal targets for deep brain stimulation in obsessive-compulsive disorder. Brain Stimul. 12, 724–734 (2019).

    Article  PubMed  Google Scholar 

  185. Huys, D. et al. Open-label trial of anterior limb of internal capsule–nucleus accumbens deep brain stimulation for obsessive-compulsive disorder: insights gained. J. Neurol. Neurosurg. Psychiat. 90, 805–812 (2019).

    Article  PubMed  Google Scholar 

  186. Mantione, M. et al. Cognitive effects of deep brain stimulation in patients with obsessive-compulsive disorder. J. Psychiat. Neurosci. 40, 378–386 (2015).

    Article  Google Scholar 

  187. Tyagi, H. et al. A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive-compulsive disorder: clinical and imaging evidence for dissociable effects. Biol. Psychiat. 85, 726–734 (2019).

    Article  PubMed  Google Scholar 

  188. Mallet, L. et al. Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N. Engl. J. Med. 359, 2121–2134 (2009).

    Article  Google Scholar 

  189. Luyten, L., Hendrickx, S., Raymaekers, S., Gabriëls, L. & Nuttin, B. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol. Psychiat. 21, 1272–1280 (2016).

    Article  Google Scholar 

  190. Combs, H. L. et al. Cognition and depression following deep brain stimulation of the subthalamic nucleus and globus pallidus pars internus in Parkinson’s disease: a meta-analysis. Neuropsychol. Rev. 25, 439–454 (2015).

    Article  PubMed  Google Scholar 

  191. Rughani, A. et al. Congress of neurological surgeons systematic review and evidence-based guideline on subthalamic nucleus and globus pallidus internus deep brain stimulation for the treatment of patients with Parkinson’s disease: executive summary. Neurosurgery 82, 753–756 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Elgebaly, A., Elfil, M., Attia, A., Magdy, M. & Negida, A. Neuropsychological performance changes following subthalamic versus pallidal deep brain stimulation in Parkinson’s disease: a systematic review and metaanalysis. CNS Spectr. 23, 10–23 (2018).

    Article  PubMed  Google Scholar 

  193. Tan, Z.-G., Zhou, Q., Huang, T. & Jiang, Y. Efficacies of globus pallidus stimulation and subthalamic nucleus stimulation for advanced Parkinson’s disease: a meta-analysis of randomized controlled trials. Clin. Interv. Aging 11, 777–786 (2016).

    PubMed  PubMed Central  Google Scholar 

  194. Martínez-Martínez, A., Aguilar, O. & Acevedo-Triana, C. Meta-analysis of the relationship between deep brain stimulation in patients with Parkinson’s disease and performance in evaluation tests for executive brain functions. Parkinsons Dis. 2017, 9641392 (2017).

    PubMed  PubMed Central  Google Scholar 

  195. Rothlind, J. C. et al. Neuropsychological changes following deep brain stimulation surgery for Parkinson’s disease: comparisons of treatment at pallidal and subthalamic targets versus best medical therapy. J. Neurol. Neurosurg. Psychiat. 86, 622–629 (2014).

    Article  PubMed  Google Scholar 

  196. Wang, J., Pan, R., Cui, Y., Wang, Z. & Li, Q. Effects of deep brain stimulation in the subthalamic nucleus on neurocognitive function in patients with Parkinson’s disease compared with medical therapy: a meta-analysis. Front. Neurol. 12, 610840 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Witt, K. et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol. 7, 605–614 (2008).

    Article  PubMed  Google Scholar 

  198. Xie, Y., Meng, X., Xiao, J., Zhang, J. & Zhang, J. Cognitive changes following bilateral deep brain stimulation of subthalamic nucleus in Parkinson’s disease: a meta-analysis. BioMed. Res. Int. 9, 2529 (2016).

    Google Scholar 

  199. Baldo, J. V., Shimamura, A. P., Delis, D. C., Kramer, J. & Kaplan, E. Verbal and design fluency in patients with frontal lobe lesions. J. Int. Neuropsychol. Soc. 7, 586–596 (2001).

    Article  PubMed  Google Scholar 

  200. Robinson, G., Shallice, T., Bozzali, M. & Cipolotti, L. The differing roles of the frontal cortex in fluency tests. Brain 135, 2202–2214 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Mikos, A., Zahodne, L., Okun, M. S., Foote, K. & Bowers, D. Cognitive declines after unilateral deep brain stimulation surgery in Parkinson’s disease: a controlled study using reliable change, part II. Clin. Neuropsychol. 24, 235–245 (2010).

    Article  PubMed  Google Scholar 

  202. Maheshwary, A., Mohite, D., Omole, J. A., Bhatti, K. S. & Khan, S. Is deep brain stimulation associated with detrimental effects on cognitive functions in patients of Parkinson’s disease? A systematic review. Cureus 12, e9688 (2020).

    PubMed  PubMed Central  Google Scholar 

  203. Schulz, G. M. et al. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson’s disease: differential effects on motor, speech and language function. J. Parkinsons Dis. 2, 29–40 (2012).

    Article  PubMed  Google Scholar 

  204. Lueken, U., Schwarz, M., Hertel, F., Schweiger, E. & Wittling, W. Impaired performance on the Wisconsin Card Sorting Test under left- when compared to right-sided deep brain stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J. Neurol. 255, 1940–1948 (2008).

    Article  PubMed  Google Scholar 

  205. Ray, N. et al. The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson’s disease. Neuropsychologia 47, 2828–2834 (2009).

    Article  PubMed  Google Scholar 

  206. Mirabella, G. et al. Deep brain stimulation of subthalamic nuclei affects arm response inhibition in Parkinson’s patients. Cereb. Cortex 22, 1124–1132 (2012).

    Article  PubMed  Google Scholar 

  207. Mancini, C. et al. Unilateral stimulation of subthalamic nucleus does not affect inhibitory control. Front. Neurol. 9, 1149 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Lefaucheur, R. et al. Early verbal fluency decline after STN implantation: is it a cognitive microlesion effect? J. Neurol. Sci. 321, 96–99 (2012).

    Article  PubMed  Google Scholar 

  209. Witt, K. et al. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain 136, 2109–2119 (2013).

    Article  PubMed  Google Scholar 

  210. Mikos, A. et al. Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency. Neuroimage 54S1, S238–S246 (2011).

    Article  Google Scholar 

  211. Hamani, C. et al. Subthalamic nucleus deep brain stimulation: basic concepts and novel perspectives. eNeuro 4, ENEURO.0140-17.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Richter, E. O., Hoque, T., Halliday, W., Lozano, A. M. & Saint-Cyr, J. A. Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J. Neurosurg. 100, 541–546 (2004).

    Article  PubMed  Google Scholar 

  213. Williams, N. R., Foote, K. D. & Okun, M. S. STN vs. GPi deep brain stimulation: translating the rematch into clinical practice. Mov. Disord. Clin. Pract. 1, 24–35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Reich, M. M. et al. A brain network for deep brain stimulation induced cognitive decline in Parkinson’s disease. Brain 145, 1410–1421 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. De Gaspari, D. et al. Clinical correlates and cognitive underpinnings of verbal fluency impairment after chronic subthalamic stimulation in Parkinson’s disease. Parkinsonism Relat. Disord. 12, 289–295 (2006).

    Article  PubMed  Google Scholar 

  216. Obeso, I., Casabona, E., Bringas, M. L., Alvarez, L. & Jahanshahi, M. Semantic and phonemic verbal fluency in Parkinson’s disease: influence of clinical and demographic variables. Behav. Neurol. 25, 111–118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Rothlind, J. C. et al. Predictors of multi-domain cognitive decline following DBS for treatment of Parkinson’s disease. Parkinsonism Relat. Disord. 95, 23–27 (2022).

    Article  PubMed  Google Scholar 

  218. Smeding, H. M. M., Speelman, J. D., Huizenga, H. M., Schuurman, P. R. & Schmand, B. Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson’s disease. J. Neurol. Neurosurg. Psychiat. 82, 754–760 (2011).

    Article  PubMed  Google Scholar 

  219. Parsons, T. D., Rogers, S. A., Braaten, A. J., Woods, S. P. & Tröster, A. I. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol. 5, 578–588 (2006).

    Article  PubMed  Google Scholar 

  220. Pahwa, R. et al. Long-term evaluation of deep brain stimulation of the thalamus. J. Neurosurg. 104, 506–512 (2006).

    Article  PubMed  Google Scholar 

  221. Duval, C., Daneault, J.-F., Hutchison, W. D. & Sadikot, A. F. A brain network model explaining tremor in Parkinson’s disease. Neurobiol. Dis. 85, 49–59 (2016).

    Article  PubMed  Google Scholar 

  222. Tröster, A. I. et al. Neuropsychological functioning before and after unilateral thalamic stimulating electrode implantation in Parkinson’s disease. Neurosurg. Focus 2, E11 (1997).

    Article  Google Scholar 

  223. Woods, S. P. et al. Neuropsychological and quality of life changes following unilateral thalamic deep brain stimulation in Parkinson’s disease: a one-year follow-up. Acta Neurochir. 143, 1273–1278 (2001).

    Article  PubMed  Google Scholar 

  224. Caparros-Lefebvre, D. et al. Chronic thalamic stimulation improves tremor and levodopa induced dyskinesias in Parkinson’s disease. J. Neurol. Neurosurg. Psychiat. 56, 268–273 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Zahodne, L. B. et al. Cognitive declines one year after unilateral deep brain stimulation surgery in Parkinson’s disease: a controlled study using reliable change. Clin. Neuropsychol. 23, 385–405 (2009).

    Article  PubMed  Google Scholar 

  226. Tang, V. et al. Evidence of improved immediate verbal memory and diminished category fluency following STN-DBS in Chinese-Cantonese patients with idiopathic Parkinson’s disease. Neurol. Sci. 36, 1371–1377 (2015).

    Article  PubMed  Google Scholar 

  227. Schuepbach, W. M. M. et al. Neurostimulation for Parkinson’s disease with early motor complications. N. Engl. J. Med. 368, 610–622 (2013).

    Article  PubMed  Google Scholar 

  228. Fields, J. A. et al. Neuropsychological and quality of life outcomes 12 months after unilateral thalamic stimulation for essential tremor. J. Neurol. Neurosurg. Psychiat. 74, 305–311 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Tröster, A. I. et al. Neuropsychological and quality of life outcome after thalamic stimulation for essential tremor. Neurology 53, 1774–1780 (1999).

    Article  PubMed  Google Scholar 

  230. Heber, I. A. et al. Cognitive effects of deep brain stimulation for essential tremor: evaluation at 1 and 6 years. J. Neural Transm. 120, 1569–1577 (2013).

    Article  PubMed  Google Scholar 

  231. Jones, J. D. et al. Cognitive outcomes for essential tremor patients selected for thalamic deep brain stimulation surgery through interdisciplinary evaluations. Front. Hum. Neurosci. 14, 532 (2020).

    Article  Google Scholar 

  232. Dhima, K. et al. Neuropsychological outcomes after thalamic deep brain stimulation for essential tremor. Parkinsonism Relat. Disord. 92, 88–93 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Ehlen, F., Schoenecker, T., Kühn, A. A. & Klostermann, F. Differential effects of deep brain stimulation on verbal fluency. Brain Lang. 134, 23–33 (2014).

    Article  PubMed  Google Scholar 

  234. Ehlen, F. et al. Thalamic deep brain stimulation decelerates automatic lexical activation. Brain Cogn. 111, 34–43 (2017).

    Article  PubMed  Google Scholar 

  235. Pedrosa, D. J. et al. Verbal fluency in essential tremor patients: the effects of deep brain stimulation. Brain Stimul. 7, 359–364 (2014).

    Article  PubMed  Google Scholar 

  236. Luo, Y. et al. Deep brain stimulation for Alzheimer’s disease: stimulation parameters and potential mechanisms of action. Front. Aging Neurosci. 13, 619543 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Liu, A. K. L., Chang, R. C.-C., Pearce, R. K. B. & Gentleman, S. M. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 129, 527–540 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Aggleton, J. P. & Brown, M. W. Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav. Brain Sci. 22, 425–444 (1999).

    Article  PubMed  Google Scholar 

  239. Kuhn, J. et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol. Psychiat. 20, 353–360 (2014).

    Article  Google Scholar 

  240. Turnbull, I. M., McGeer, P. L., Beattie, L., Calne, D. & Pate, B. Stimulation of the basal nucleus of Meynert in senile dementia of Alzheimer’s type. Stereotact. Funct. Neurosurg. 48, 216–221 (1985).

    Article  Google Scholar 

  241. Baldermann, J. C. et al. Neuroanatomical characterisics associated with response to deep brain stimulation of the nucleus basalis of Meynert for Alzheimer’s disease. Neuromodulation 21, 184–190 (2018).

    Article  PubMed  Google Scholar 

  242. Lozano, A. M. et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J. Alzheimers Dis. 54, 777–787 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Leoutsakos, J. M. S. et al. Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the ADvance Trial): a two year follow-up including results of delayed activation. J. Alzheimers Dis. 64, 597–606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Mao, Z.-Q. et al. Partial improvement in performance of patients with severe Alzheimer’s disease at an early stage of fornix deep brain stimulation. Neural Regen. Res. 13, 2164 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Franzini, A. et al. Ablative brain surgery: an overview. Int. J. Hyperth. 36, 64–80 (2019).

    Article  Google Scholar 

  246. Blomstedt, P. & Hariz, M. I. Are complications less common in deep brain stimulation than in ablative procedures for movement disorders? Stereotact. Funct. Neurosurg. 84, 72–81 (2006).

    Article  PubMed  Google Scholar 

  247. Sweet, W. H. & Mark, V. H. Unipolar anodal electrolytic lesions in the brain of man and cat: report of five human cases with electrically produced bulbar or mesencephalic tractotomies. AMA Arch. Neurol. Psychiat. 70, 224–234 (1953).

    Article  Google Scholar 

  248. Volpini, M. et al. The history and future of ablative neurosurgery for major depressive disorder. Stereotact. Funct. Neurosurg. 95, 216–228 (2017).

    Article  PubMed  Google Scholar 

  249. Okun, M. S. et al. Complications of Gamma Knife surgery for Parkinson disease. Arch. Neurol. 58, 1995–2002 (2001).

    Article  PubMed  Google Scholar 

  250. Young, R. F., Li, F., Vermeulen, S. & Meier, R. Gamma Knife thalamotomy for treatment of essential tremor: long-term results. J. Neurosurg. 112, 1311–1317 (2010).

    Article  PubMed  Google Scholar 

  251. Ballantine, H. T., Bouckoms, A. J., Thomas, E. K. & Giriunas, I. E. Treatment of psychiatric illness by stereotactic cingulotomy. Biol. Psychiat. 22, 807–819 (1987).

    Article  PubMed  Google Scholar 

  252. Steele, J. D., Christmas, D., Eljamel, M. S. & Matthews, K. Anterior cingulotomy for major depression: clinical outcome and relationship to lesion characteristics. Biol. Psychiat. 63, 670–677 (2008).

    Article  PubMed  Google Scholar 

  253. Christmas, D. et al. Long term outcome of thermal anterior capsulotomy for chronic, treatment refractory depression. J. Neurol. Neurosurg. Psychiatry 82, 594–600 (2011).

    Article  PubMed  Google Scholar 

  254. Avecillas-Chasin, J. M., Hurwitz, T. A., Bogod, N. M. & Honey, C. R. An analysis of clinical outcome and tractography following bilateral anterior capsulotomy for depression. Stereotact. Funct. Neurosurg. 97, 369–380 (2019).

    Article  PubMed  Google Scholar 

  255. Mitchell-Heggs, N., Kelly, D. & Richardson, A. stereotactic limbic leucotomy — a follow-up at 16 months. Br. J. Psychiat. 128, 226–240 (1976).

    Article  Google Scholar 

  256. Hurwitz, T. A. et al. Bilateral anterior capsulotomy for intractable depression. J. Neuropsychiat. Clin. Neurosci. 24, 176–182 (2012).

    Article  Google Scholar 

  257. Riestra, A. R. et al. Unilateral right anterior capsulotomy for refractory major depression with comorbid obsessive–compulsive disorder. Neurocase 17, 491–500 (2011).

    Article  PubMed  Google Scholar 

  258. Kim, M., Kim, C.-H., Jung, H. H., Kim, S. J. & Chang, J. W. Treatment of major depressive disorder via magnetic resonance–guided focused ultrasound surgery. Biol. Psychiat. 83, e17–e18 (2018).

    Article  PubMed  Google Scholar 

  259. Davidson, B. et al. Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: clinical and imaging results from two phase I trials. Mol. Psychiat. 25, 1946–1957 (2020).

    Article  Google Scholar 

  260. Davidson, B. et al. Examining cognitive change in magnetic resonance-guided focused ultrasound capsulotomy for psychiatric illness. Transl. Psychiat. 10, 397 (2020).

    Article  Google Scholar 

  261. Oliver, B. et al. Bilateral anterior capsulotomy for refractory obsessive-compulsive disorders. Stereotact. Funct. Neurosurg. 81, 90–95 (2003).

    Article  PubMed  Google Scholar 

  262. Sheth, S. A. et al. Limbic system surgery for treatment-refractory obsessive-compulsive disorder: a prospective long-term follow-up of 64 patients: clinical article. J. Neurosurg. 118, 491–497 (2013).

    Article  PubMed  Google Scholar 

  263. Kartsounis, L. D., Poynton, A., Bridges, P. K. & Bartlett, J. R. Neuropsychological correlates of stereotactic subcaudate tractotomy. A prospective study. Brain 114, 2657–2673 (1991).

    Article  PubMed  Google Scholar 

  264. Montoya, A. et al. Magnetic resonance imaging-guided stereotactic limbic leukotomy for treatment of intractable psychiatric disease. Neurosurgery 50, 1043–1052 (2002).

    PubMed  Google Scholar 

  265. Kelly, D., Richardson, A. & Mitchell-Heggs, N. Stereotactic limbic leucotomy: neurophysiological aspects and operative technique. Br. J. Psychiat. 123, 133–140 (1973).

    Article  Google Scholar 

  266. Balachander, S., Arumugham, S. S. & Srinivas, D. Ablative neurosurgery and deep brain stimulation for obsessive-compulsive disorder. Indian J. Psychiat. 61, S77–S84 (2019).

    Article  Google Scholar 

  267. Lai, Y. et al. Effectiveness and safety of neuroablation for severe and treatment-resistant obsessive-compulsive disorder: a systematic review and meta-analysis. J. Psychiat. Neurosci. 45, 356–369 (2020).

    Article  Google Scholar 

  268. D’Astous, M., Cottin, S., Roy, M., Picard, C. & Cantin, L. Bilateral stereotactic anterior capsulotomy for obsessive-compulsive disorder: long-term follow-up. J. Neurol. Neurosurg. Psychiat. 84, 1208–1213 (2013).

    Article  PubMed  Google Scholar 

  269. Liu, K. et al. Stereotactic treatment of refractory obsessive compulsive disorder by bilateral capsulotomy with 3 years follow-up. J. Clin. Neurosci. 15, 622–629 (2008).

    Article  PubMed  Google Scholar 

  270. Nyman, H., Andreewitch, S., Lundback, E. & Mindus, P. Executive and cognitive functions in patients with extreme obsessive-compulsive disorder treated by capsulotomy. Appl. Neuropsychol. 8, 91–98 (2001).

    Article  PubMed  Google Scholar 

  271. Csigó, K. et al. Long-term follow-up of patients with obsessive–compulsive disorder treated by anterior capsulotomy: a neuropsychological study. J. Affect. Disord. 126, 198–205 (2010).

    Article  PubMed  Google Scholar 

  272. Kim, S. J. et al. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive–compulsive disorder: 2-year follow-up. J. Psychiat. Neurosci. 43, 327–337 (2018).

    Article  Google Scholar 

  273. Jung, H. H. et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol. Psychiat. 20, 1205–1211 (2015).

    Article  Google Scholar 

  274. Lopes, A. C. et al. Gamma ventral capsulotomy for obsessive-compulsive disorder: a randomized clinical trial. JAMA Psychiat. 71, 1066–1076 (2014).

    Article  Google Scholar 

  275. Peker, S. et al. Efficacy and safety of gamma ventral capsulotomy for treatment-resistant obsessive-compulsive disorder: a single-center experience. World Neurosurg. 141, e941–e952 (2020).

    Article  PubMed  Google Scholar 

  276. Rasmussen, S. A. et al. Gamma ventral capsulotomy in intractable obsessive-compulsive disorder. Biol. Psychiat. 84, 355–364 (2018).

    Article  PubMed  Google Scholar 

  277. Spatola, G. et al. Results of Gamma Knife anterior capsulotomy for refractory obsessive-compulsive disorder: results in a series of 10 consecutive patients. J. Neurosurg. 131, 376–383 (2018).

    Article  PubMed  Google Scholar 

  278. Jung, H. H. et al. Bilateral anterior cingulotomy for refractory obsessive-compulsive disorder: long-term follow-up results. Stereotact. Funct. Neurosurg. 84, 184–189 (2006).

    Article  PubMed  Google Scholar 

  279. Cooper, I. S. Intracerebral injection of procaine into the globus pallidus in hyperkinetic disorders. Science 119, 417–418 (1954).

    Article  PubMed  Google Scholar 

  280. Gillingham, F. J., Kalyanaraman, S. & Donaldson, A. A. Bilateral stereotaxic lesions in the management of Parkinsonism and the dyskinesias. Br. Med. J. 2, 656–659 (1964).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Aufenberg, C. et al. A revival of Spiegel’s campotomy: long term results of the stereotactic pallidothalamic tractotomy against the Parkinsonian thalamocortical dysrhythmia. Thalamus Relat. Syst. 3, 121–132 (2005).

    Article  Google Scholar 

  282. Alvarez, L. et al. Dorsal subthalamotomy for Parkinson’s disease. Mov. Disord. 16, 72–78 (2001).

    Article  PubMed  Google Scholar 

  283. Guiot, G. et al. Délimitation précise des structures sous-corticales et identification de noyaux thalamiques chez l’homme par l’électrophysiologie stéréotaxique. Neurochirurgia 5, 1–18 (1962).

    PubMed  Google Scholar 

  284. Carr, J. A. R., Honey, C. R., Sinden, M., Phillips, A. G. & Martzke, J. S. A waitlist control-group study of cognitive, mood, and quality of life outcome after posteroventral pallidotomy in Parkinson disease. J. Neurosurg. 99, 78–88 (2003).

    Article  PubMed  Google Scholar 

  285. Green, J. & Barnhart, H. The impact of lesion laterality on neuropsychological change following posterior pallidotomy: a review of current findings. Brain Cogn. 42, 379–398 (2000).

    Article  PubMed  Google Scholar 

  286. Schmand, B. et al. Unilateral pallidotomy in PD: a controlled study of cognitive and behavioral effects. The Netherlands Pallidotomy Study (NEPAS) group. Neurology 54, 1058–1064 (2000).

    Article  PubMed  Google Scholar 

  287. de Bie, R. M. A. et al. Morbidity and mortality following pallidotomy in Parkinson’s disease: a systematic review. Neurology 58, 1008–1012 (2002).

    Article  PubMed  Google Scholar 

  288. Trépanier, L. L., Saint-Cyr, J. A., Lozano, A. M. & Lang, A. E. Neuropsychological consequences of posteroventral pallidotomy for the treatment of Parkinson’s disease. Neurology 51, 207–215 (1998).

    Article  PubMed  Google Scholar 

  289. Green, J. et al. Neuropsychological and psychiatric sequelae of pallidotomy for PD: clinical trial findings. Neurology 58, 858–865 (2002).

    Article  PubMed  Google Scholar 

  290. Rettig, G. M. et al. Neuropsychological outcome after unilateral pallidotomy for the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 69, 326–336 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Riordan, H. J., Flashman, L. A. & Roberts, D. W. Neurocognitive and psychosocial correlates of ventroposterolateral pallidotomy surgery in Parkinson’s disease. Neurosurg. Focus. 2, E9 (1997).

    Article  Google Scholar 

  292. Lang, A. E. et al. Posteroventral medial pallidotomy in Parkinson’s disease. J. Neurol. 246, II28–II41 (1999).

    Article  PubMed  Google Scholar 

  293. Gironell, A. et al. Effects of pallidotomy and bilateral subthalamic stimulation on cognitive function in Parkinson disease. A controlled comparative study. J. Neurol. 250, 917–923 (2003).

    Article  PubMed  Google Scholar 

  294. Uitti, R. J. et al. Unilateral pallidotomy for Parkinson’s disease: speech, motor, and neuropsychological outcome measurements. Parkinsonism Relat. Disord. 6, 133–143 (2000).

    Article  PubMed  Google Scholar 

  295. Jung, N. Y. et al. The efficacy and limits of magnetic resonance–guided focused ultrasound pallidotomy for Parkinson’s disease: a phase I clinical trial. J. Neurosurg. 130, 1853–1861 (2018).

    Article  Google Scholar 

  296. Martínez-Fernández, R. et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. Lancet Neurol. 17, 54–63 (2018).

    Article  PubMed  Google Scholar 

  297. Gallay, M. N. et al. MRgFUS pallidothalamic tractotomy for chronic therapy-resistant Parkinson’s disease in 51 consecutive patients: single center experience. Front. Surg. 6, 76 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Magara, A. et al. First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. J. Ther. Ultrasound 2, 11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Martínez-Fernández, R. et al. Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease. N. Engl. J. Med. 383, 2501–2513 (2020).

    Article  PubMed  Google Scholar 

  300. Nijhawan, S. R. et al. Changes in cognition and health-related quality of life with unilateral thalamotomy for Parkinsonian tremor. J. Clin. Neurosci. 16, 44–50 (2009).

    Article  PubMed  Google Scholar 

  301. Witjas, T. et al. A prospective single-blind study of Gamma Knife thalamotomy for tremor. Neurology 85, 1562–1568 (2015).

    Article  PubMed  Google Scholar 

  302. Rohringer, C. R. et al. Cognitive effects of unilateral thalamotomy for tremor: a meta-analysis. Brain Commun. 4, fcac287 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Saporito, G. et al. Cognitive outcomes after focused ultrasound thalamotomy for tremor: Results from the COGNIFUS (COGNitive in Focused UltraSound) study. Parkinsonism Relat. Disord. 106, 105230 (2023).

    Article  PubMed  Google Scholar 

  304. Gasca-Salas, C. et al. Cognitive safety after unilateral magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. J. Neurol. Neurosurg. Psychiat. 90, 830–831 (2019).

    Article  PubMed  Google Scholar 

  305. Martínez-Fernández, R. et al. Bilateral staged magnetic resonance-guided focused ultrasound thalamotomy for the treatment of essential tremor: a case series study. J. Neurol. Neurosurg. Psychiat. 92, 927–931 (2021).

    Article  PubMed  Google Scholar 

  306. Jung, N. Y., Park, C. K., Chang, W. S., Jung, H. H. & Chang, J. W. Effects on cognition and quality of life with unilateral magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. Neurosurg. Focus. 44, E8 (2018).

    Article  PubMed  Google Scholar 

  307. Rabin, J. S. et al. Patient satisfaction following unilateral MR-guided focused ultrasound for tremor: who is satisfied and who is not? Parkinsonism Relat. Disord. 112, 105439 (2023).

    Article  PubMed  Google Scholar 

  308. Scantlebury, N. et al. Safety of bilateral staged magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. Mov. Disord. Clin. Pract. https://doi.org/10.1002/mdc3.13882 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Bari, A. A. et al. Charting the road forward in psychiatric neurosurgery: proceedings of the 2016 American Society for Stereotactic and Functional Neurosurgery workshop on neuromodulation for psychiatric disorders. J. Neurol. Neurosurg. Psychiat. 89, 886–896 (2018).

    Article  PubMed  Google Scholar 

  310. Dujardin, K., Defebvre, L., Krystkowiak, P., Blond, S. & Destée, A. Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson’s disease. J. Neurol. 248, 603–611 (2001).

    Article  PubMed  Google Scholar 

  311. Modak, A. & Fitzgerald, P. B. Personalising transcranial magnetic stimulation for depression using neuroimaging: a systematic review. World J. Biol. Psychiat. 22, 647–669 (2021).

    Article  Google Scholar 

  312. Schoenberg, M. R., Mash, K. M., Bharucha, K. J., Francel, P. C. & Scott, J. G. Deep brain stimulation parameters associated with neuropsychological changes in subthalamic nucleus stimulation for refractory Parkinson’s disease. Stereotact. Funct. Neurosurg. 86, 337–344 (2008).

    Article  PubMed  Google Scholar 

  313. Woods, S. P., Fields, J. A., Lyons, K. E., Pahwa, R. & Tröster, A. I. Pulse width is associated with cognitive decline after thalamic stimulation for essential tremor. Parkinsonism Relat. Disord. 9, 295–300 (2003).

    Article  PubMed  Google Scholar 

  314. Avecillas-Chasin, J. M., Hurwitz, T. A., Bogod, N. M. & Honey, C. R. Tractography-guided anterior capsulotomy for major depression and obsessive-compulsive disorder: targeting the emotion network. Oper. Neurosurg. 20, 406 (2021).

    Article  Google Scholar 

  315. Chazen, J. L., Stavarache, M. & Kaplitt, M. G. Cranial MR-guided focused ultrasound: clinical challenges and future directions. World Neurosurg. 145, 574–580 (2021).

    Article  PubMed  Google Scholar 

  316. Krishna, V. et al. Prospective tractography-based targeting for improved safety of focused ultrasound thalamotomy. Neurosurgery 84, 160 (2019).

    Article  PubMed  Google Scholar 

  317. Woods, S. P. et al. Statistical power of studies examining the cognitive effects of subthalamic nucleus deep brain stimulation in Parkinson’s disease. Clin. Neuropsychol. 20, 27–38 (2006).

    Article  PubMed  Google Scholar 

  318. Robbins, T. W. From arousal to cognition: the integrative position of the prefrontal cortex. Prog. Brain Res. 126, 469–483 (2000).

    Article  PubMed  Google Scholar 

  319. Chamberlain, S. R. et al. Impaired cognitive flexibility and motor inhibition in unaffected first-degree relatives of patients with obsessive-compulsive disorder. Am. J. Psychiat. 164, 335–338 (2007).

    Article  PubMed  Google Scholar 

  320. Roiser, J. P. & Sahakian, B. J. Hot and cold cognition in depression. CNS Spectr. 18, 139–149 (2013).

    Article  PubMed  Google Scholar 

  321. Enkavi, A. Z. et al. Large-scale analysis of test–retest reliabilities of self-regulation measures. Proc. Natl Acad. Sci. 116, 5472–5477 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Sullivan, C. R. P., Olsen, S. & Widge, A. S. Deep brain stimulation for psychiatric disorders: from focal brain targets to cognitive networks. NeuroImage 225, 117515 (2021).

    Article  PubMed  Google Scholar 

  323. Rabin, J. S. et al. Commonly used outcome measures in neurosurgical trials for major depressive disorder might not capture clinically meaningful treatment effects. J. Neurol. Neurosurg. Psychiat. 93, 455–456 (2022).

    Article  PubMed  Google Scholar 

  324. Moser, D. J. et al. Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology 58, 1288–1290 (2002).

    Article  PubMed  Google Scholar 

  325. Meek, B. P., Fotros, A., Abo Aoun, M. & Modirrousta, M. Improvements in error-monitoring and symptoms following low-frequency rTMS of dorsal anterior cingulate cortex in obsessive compulsive disorder; a randomized, sham-controlled study. Brain Cogn. 154, 105809 (2021).

    Article  PubMed  Google Scholar 

  326. Alyagon, U., Barnea-Ygael, N., Carmi, L. & Zangen, A. Modifications of cognitive performance in the stroop task following deep rTMS treatment course in OCD patients. Brain Stimul. 14, 48–50 (2021).

    Article  PubMed  Google Scholar 

  327. Mansur, C. G. et al. Placebo effect after prefrontal magnetic stimulation in the treatment of resistant obsessive-compulsive disorder: a randomized controlled trial. Int. J. Neuropsychopharmacol. 14, 1389–1397 (2011).

    Article  PubMed  Google Scholar 

  328. Kang, J. I., Kim, C.-H., Namkoong, K., Lee, C.-I. & Kim, S. J. A randomized controlled study of sequentially applied repetitive transcranial magnetic stimulation in obsessive-compulsive disorder. J. Clin. Psychiat. 70, 1645–1651 (2009).

    Article  Google Scholar 

  329. Zhen, L. L., Zou, X. J., Peng, G. H. & Zou, K. Effects of theta burst stimulation mode repetitive transcranial magnetic stimulation on executive function in elderly patients with chronic schizophrenia. Chin. J. Gerontol. 38, 2947–2950 (2018).

    Google Scholar 

  330. Levkovitz, Y., Rabany, L., Harel, E. V. & Zangen, A. Deep transcranial magnetic stimulation add-on for treatment of negative symptoms and cognitive deficits of schizophrenia: a feasibility study. Int. J. Neuropsychopharmacol. 14, 991–996 (2011).

    Article  PubMed  Google Scholar 

  331. Bagattini, C. et al. Enhancing cognitive training effects in Alzheimer’s disease: rTMS as an add-on treatment. Brain Stimul. 13, 1655–1664 (2020).

    Article  PubMed  Google Scholar 

  332. Cotelli, M., Manenti, R., Cappa, S. F., Zanetti, O. & Miniussi, C. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur. J. Neurol. 15, 1286–1292 (2008).

    Article  PubMed  Google Scholar 

  333. Bentwich, J. et al. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: a proof of concept study. J. Neural Transm. 118, 463–471 (2011).

    Article  PubMed  Google Scholar 

  334. Foley, J. A. et al. Apathy and reduced speed of processing underlie decline in verbal fluency following DBS. Behav. Neurol. 2017, e7348101 (2017).

    Article  Google Scholar 

  335. Follett, K. A. et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 362, 2077–2091 (2010).

    Article  PubMed  Google Scholar 

  336. Rački, V. et al. Cognitive impact of deep brain stimulation in Parkinson’s disease patients: a systematic review. Front. Hum. Neurosci. 16, 867055 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  337. Duma, C. M. et al. Gamma Knife radiosurgery for thalamotomy in Parkinsonian tremor: a five-year experience. J. Neurosurg. 88, 1044–1049 (1998).

    Article  PubMed  Google Scholar 

  338. Ochsner, K. N. & Gross, J. J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).

    Article  PubMed  Google Scholar 

  339. Ferguson, M. A. et al. A human memory circuit derived from brain lesions causing amnesia. Nat. Commun. 10, 3497 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  340. Koulousakis, P., Andrade, P., Visser-Vandewalle, V. & Sesia, T. The nucleus basalis of Meynert and its role in deep brain stimulation for cognitive disorders: a historical perspective. J. Alzheimers Dis. 69, 905–919 (2019).

    Article  PubMed  Google Scholar 

  341. Robertson, L. T. Memory and the brain. J. Dent. Educ. 66, 30–42 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.W. and I.J.S. researched data for the article. J.S.R., M.W., I.J.S. and N.L. wrote the article. All authors contributed substantially to the discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jennifer S. Rabin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Stephanie Cernera and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiseman, M., Sewell, I.J., Nestor, S.M. et al. Cognitive effects of focal neuromodulation in neurological and psychiatric disorders. Nat Rev Psychol 3, 242–260 (2024). https://doi.org/10.1038/s44159-024-00291-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-024-00291-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing