Serotonin-2B receptor antagonism increases the activity of dopamine and glutamate neurons in the presence of selective serotonin reuptake inhibition

Abstract

Previous research has implicated the serotonin-2B (5-HT2B) receptor as a possible contributor to the antidepressant-like response. Aripiprazole has been successfully used in combination with selective serotonin reuptake inhibitors (SSRIs) in treatment-resistant depression and it, among all receptors, exhibits the highest affinity for the 5-HT2B receptor. However, the potential contribution of such an antagonistic action on 5-HT2B receptors in the context of adjunct therapy is not known. In vivo electrophysiological recordings of ventral tegmental area (VTA) dopamine (DA) neurons, dorsal raphe nucleus (DRN) 5-HT neurons and pyramidal neurons in the medial prefrontal cortex (mPFC), and the hippocampus were conducted in anaesthetized Sprague-Dawley rats after the administration of 5-HT2B receptor ligands alone or in combination with the SSRI escitalopram. An escitalopram-induced decrease in DA, but not 5-HT firing activity, was rescued by 2-day co-administration of the selective 5-HT2B receptor antagonist LY266097. In the mPFC, 14-day escitalopram administration alone had no effect on pyramidal neuron firing and burst activity, whereas, aripiprazole administered alone or in combination with escitalopram for 14 days increased pyramidal neuron firing and burst activity. Likewise, the administration of LY266097 alone or its addition on the last 3 days of a 14-day escitalopram regimen increased pyramidal neuron firing and burst activity. These results indicated that 5-HT2B receptors play, at least in part, a role in this enhancement. In the hippocampus, 5-HT2B receptor activation by BW723c86 decreased escitalopram-induced inhibition of 5-HT reuptake, which was reversed by a 5-HT2B receptor antagonist. Altogether, these results put into evidence the possibility that 5-HT2B receptor blockade contributes to the therapeutic effect of aripiprazole addition to SSRIs in depression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: 5-HT2B receptors modulate firing and burst activity of DA neurons.
Fig. 2: Blockade of 5-HT2B receptors reverses escitalopram-induced inhibition of DA neurons.
Fig. 3: Blockade of 5-HT2B receptors does not rescue escitalopram-induced inhibition of 5-HT neurons.
Fig. 4: Blockade of 5-HT2B receptors increases mPFC pyramidal neurons firing and burst activity.
Fig. 5: 5-HT2B receptor agonism but not antagonism impairs 5-HTT function.

References

  1. 1.

    Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D, et al. Medication augmentation after the failure of SSRIs for depression. N. Engl J Med. 2006;354:1243–52.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Zohar J, Stahl S, Moller HJ, Blier P, Kupfer D, Yamawaki S, et al. A review of the current nomenclature for psychotropic agents and an introduction to the neuroscience-based nomenclature. Eur Neuropsychopharmacol 2015;25:2318–25.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Luan S, Wan H, Zhang L, Zhao H. Efficacy, acceptability, and safety of adjunctive aripiprazole in treatment-resistant depression: a meta-analysis of randomized controlled trials. Neuropsychiatr Dis Treat. 2018;14:467–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Chernoloz O, El Mansari M, Blier P. Electrophysiological studies in the rat brain on the basis for aripiprazole augmentation of antidepressants in major depressive disorder. Psychopharmacol (Berl). 2009;206:335–44.

    CAS  Article  Google Scholar 

  5. 5.

    Haj-Dahmane S. D2-like dopamine receptor activation excites rat dorsal raphe 5-HT neurons in vitro. Eur J Neurosci. 2001;14:125–34.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Aman TK, Shen RY, Haj-Dahmane S. D2-like dopamine receptors depolarize dorsal raphe serotonin neurons through the activation of nonselective cationic conductance. J Pharm Exp Ther. 2007;320:376–85.

    CAS  Article  Google Scholar 

  7. 7.

    Ebrahimzadeh M, El Mansari M, Blier P. Synergistic effect of aripiprazole and escitalopram in increasing serotonin but not norepinephrine neurotransmission in the rat hippocampus. Neuropharmacology 2019;146:12–18.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003;28:1400–11.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Shahid M, Walker GB, Zorn SH, Wong EHF. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol. 2009;23:65–73.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Devroye C, Cathala A, Piazza PV, Spampinato U. The central serotonin 2B receptor as a new pharmacological target for the treatment of dopamine-related neuropsychiatric disorders: rationale and current status of research. Pharm Ther. 2018;181:143–55.

    CAS  Article  Google Scholar 

  11. 11.

    Bonaventure P, Guo H, Tian B, Liu X, Bittner A, Roland B, et al. Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res. 2002;943:38–47.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Cathala A, Devroye C, Drutel G, Revest JM, Artigas F, Spampinato U. Serotonin2B receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitory control on serotonin neurons. Exp Neurol. 2019;311:57–66.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Doly S, Quentin E, Eddine R, Tolu S, Fernandez SP, Bertran-Gonzalez J, et al. Serotonin 2B receptors in mesoaccumbens dopamine pathway regulate cocaine responses. J Neurosci. 2017;37:1354–17.

    Article  Google Scholar 

  14. 14.

    Duxon MS, Flanigan TP, Reavley TAC, Baxter TGS, Blackburn TP, Fone KCF. Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Lett Neurosci. 1997;76:323–9.

    CAS  Article  Google Scholar 

  15. 15.

    Niebert M, Vogelgesang S, Koch UR, Bischoff AM, Kron M, Bock N, et al. Expression and function of serotonin 2A and 2B receptors in the mammalian respiratory network. PLoS ONE 2011;6:e21395.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Diaz SL, Maroteaux L. Implication of 5-HT2B receptors in the serotonin syndrome. Neuropharmacology 2011;61:495–502.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Diaz SL, Doly S, Narboux-Neme N, Fernández S, Mazot P, Banas SM, et al. 5-HT2B receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 2012;17:154–63.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Diaz SL, Narboux-Nême N, Boutourlinsky K, Doly S, Maroteaux L. Mice lacking the serotonin 5-HT2B receptor as an animal model of resistance to selective serotonin reuptake inhibitors antidepressants. Eur Neuropsychopharmacol. 2016;26:265–79.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Belmer A, Quentin E, Diaz SL, Guiard BP, Fernandez SP, Doly S, et al. Positive regulation of raphe serotonin neurons by serotonin 2B receptors. Neuropsychopharmacology 2018;43:1–10.

    Article  CAS  Google Scholar 

  20. 20.

    Launay J-M, Schneider B, Lorie S, Da Prada M, Kellermann O. Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. FASEB J. 2006;20:1843–54.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Kennett GA, Bright F, Trail B, Baxter GS, Blackburn TP. Effects of the 5-HT2B receptor agonist, BW 723C86, on three rat models of anxiety. Br J Pharm. 1996;117:1443–8.

    CAS  Article  Google Scholar 

  22. 22.

    Bonhaus DW, Flippin LA, Greenhouse RJ, Jaime S, Rocha C, Dawson M, et al. RS-127445: a selective, high affinity, orally bioavailable 5-HT2B receptor antagonist. Br J Pharm. 1999;127:1075–82.

    CAS  Article  Google Scholar 

  23. 23.

    Devroye C, Cathala A, Haddjeri N, Rovera R, Vallée M, Drago F, et al. Differential control of dopamine ascending pathways by serotonin2B receptor antagonists: new opportunities for the treatment of schizophrenia. Neuropharmacology 2016;109:59–68.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Banas SM, Doly S, Boutourlinsky K, Diaz SL, Belmer A, Callebert J, et al. Deconstructing antiobesity compound action: Requirement of serotonin 5-HT2B receptors for dexfenfluramine anorectic effects. Neuropsychopharmacology 2011;36:423–33.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M. Dopamine D2 and serotonin 5-HT1A receptors mediate the actions of aripiprazole in mesocortical and mesoaccumbens transmission. Neuropharmacology 2012;62:765–74.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Audia JE, Evrard DA, Murdoch GR, Droste JJ, Nissen JS, Schenck KW, et al. Potent, selective tetrahydro-β-carboline antagonists of the serotonin 2B (5HT2B) contractile receptor in the rat stomach fundus. J Med Chem. 1996;39:2773–80.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    El Mansari M, Sanchez C, Chouvet G, Renaud B, Haddjeri N. Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an In Vivo electrophysiological study in rat brain. Neuropsychopharmacology 2005;30:1269–77.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Chenu F, Shim S, El Mansari M, Blier P. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons. J Psychopharmacol. 2014;28:162–7.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th edn. Radarweg, AM: Academic Press; 2007.

    Google Scholar 

  30. 30.

    Grace AA, Bunney BS. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-1. Identif Charact Neurosci. 1983;10:301–15.

    CAS  Google Scholar 

  31. 31.

    Ungless MA, Grace AA. Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci. 2012;35:422–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Vandermaelen CP, Aghajanian GK. Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res. 1983;289:109–19.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Hajós M, Allers KA, Jennings K, Sharp T, Charette G, Sík A, et al. Neurochemical identification of stereotypic burst-firing neurons in the rat dorsal raphe nucleus using juxtacellular labelling methods. Eur J Neurosci. 2007;25:119–26.

    PubMed  Article  Google Scholar 

  34. 34.

    Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 2004;14:1100–9.

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Santana N, Mengod G, Artigas F. Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 2009;19:849–60.

    PubMed  Article  Google Scholar 

  36. 36.

    Riga MS, Teruel-Martí V, Sánchez C, Celada P, Artigas F. Subchronic vortioxetine treatment –but not escitalopram– enhances pyramidal neuron activity in the rat prefrontal cortex. Neuropharmacology 2017;113:148–55.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Laviolette SR, Lipski WJ, Grace AA. A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine d4 receptor-dependent basolateral amygdala input. J Neurosci. 2005;25:6066–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Stumm RK, Zhou C, Schulz S, Höllt V. Neuronal Types Expressing μ- and δ-Opioid Receptor mRNA in the Rat Hippocampal Formation. J Comp Neurol. 2004;469:107–18.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Monory K, Massa F, Egertová M, Eder M, Blaudzun H, Westenbroek R, et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 2006;51:455–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Ranck JB. Behavioral correlates and firing repertoires of neurons in the dorsal hippocampal formation and septum of unrestrained rats. Boston, MA: The Hippocampus. Springer; 1975.

    Google Scholar 

  41. 41.

    de Montigny C, Wang RY, Reader TA, Aghajanian GK. Monoaminergic denervation of the rat hippocampus: Microiontophoretic studies on pre- and postsynaptic supersensitivity to norepinephrine and serotonin. Brain Res. 1980;200:363–76.

    PubMed  Article  Google Scholar 

  42. 42.

    Piñeyro G, Blier P, Dennis T, De Montigny C. Desensitization of the neuronal 5-HT carrier following its long-term blockade. J Neurosci. 1994;14:3036–47.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Oosterhof NN, Oosterhof CA. BurstiDAtor: A lightweight discharge analysis program for neural extracellular single unit recordings. Github. https://github.com/nno/burstiDAtor. 2013.

  44. 44.

    Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E. Biochemical and electrophysiological evidence that RO 60-0175 inhibits mesolimbic dopaminergic function through serotonin(2C) receptors. Brain Res. 2000;865:85–90.

    PubMed  Article  Google Scholar 

  45. 45.

    Gobert A, Rivet J-M, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas J-P, et al. Serotonin-2C receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: A combined dialysis and electrophysiological analysis in the rat. Synapse 2000;36:205–21.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Kennett GA, Trail B, Bright F. Anxiolytic-like actions of BW 723C86 in the rat Vogel conflict test are 5-HT2B receptor mediated. Neuropharmacology 1998;37:1603–10.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Arborelius L, Chergui K, Murase S, Nomikos GG, Hk BB, Chouvet G, et al. The 5-HTIA receptor selective ligands, (R)-8-OH-DPAT and (S)-UH-301, differentially affect the activity of midbrain dopamine neurons. Naunyn Schmiedebergs Arch Pharm. 1993;347:353–62.

    CAS  Article  Google Scholar 

  48. 48.

    Dremencov E, El Mansari M, Blier P. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area. J Psychiatry Neurosci. 2009;34:223–9.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Devroye C, Haddjeri N, Cathala A, Rovera R, Drago F, Piazza PV, et al. Opposite control of mesocortical and mesoaccumbal dopamine pathways by serotonin2Breceptor blockade: Involvement of medial prefrontal cortex serotonin1Areceptors. Neuropharmacology 2017;119:91–99.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Davidson C, Stamford JA. Evidence that 5‐hydroxytryptamine release in rat dorsal raphé nucleus is controlled by 5‐HT1A, 5‐HT1B and 5‐HT1D autoreceptors. Br J Pharm. 1995;114:1107–9.

    CAS  Article  Google Scholar 

  51. 51.

    Boothman LJ, Allers KA, Rasmussen K, Sharp T. Evidence that central 5-HT 2A and 5-HT 2B/C receptors regulate 5-HT cell firing in the dorsal raphe nucleus of the anaesthetised rat. Br J Pharm. 2003;139:998–1004.

    CAS  Article  Google Scholar 

  52. 52.

    Brouard JT, Schweimer JV, Houlton R, Burnham KE, Quérée P, Sharp T. Pharmacological Evidence for 5-HT6 Receptor Modulation of 5-HT Neuron Firing in Vivo. ACS Chem Neurosci. 2015;6:1241–7.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Mnie-Filali O, Faure C, Lambás-Sẽas L, El Mansari M, Belblidia H, Gondard E, et al. Pharmacological blockade of 5-HT 7 receptors as a putative fast acting antidepressant strategy. Neuropsychopharmacology 2011;36:1275–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Zhang YW, Rudnick G. Serotonin transporter mutations associated with obsessive-compulsive disorder and phosphorylation alter binding affinity for inhibitors. Neuropharmacology 2005;49:791–7.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Li Z, Ichikawa J, Dai J, Meltzer HY. Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharm. 2004;493:75–83.

    CAS  Article  Google Scholar 

  56. 56.

    Cussac D, Newman-Tancredi A, Quentric Y, Carpentier N, Poissonnet G, Parmentier JG, et al. Characterization of phospholipase C activity at h5-HT2C compared with h5-HT2B receptors: Influence of novel ligands upon membrane-bound levels of [3H]phosphatidylinositols. Naunyn Schmiedebergs Arch Pharm. 2002;365:242–52.

    CAS  Article  Google Scholar 

  57. 57.

    Bergqvist PBF, Dong J, Blier P. Effect of atypical antipsychotic drugs on 5-HT2 receptors in the rat orbito-frontal cortex: an in vivo electrophysiological study. Psychopharmacol (Berl). 1999;143:89–96.

    CAS  Article  Google Scholar 

  58. 58.

    Wainscott B, Nelson L, Lilly E. Pharmacologic characterization of the human 5-HT2B receptor: evidence for species differences. J Pharm Exp Ther. 1996;276:720–7.

    CAS  Google Scholar 

  59. 59.

    Gronier BS, Rasmussen K. Electrophysiological effects of acute and chronic olanzapine and fluoxetine in the rat prefrontal cortex. Neurosci Lett. 2003;349:196–200.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Celada P, Puig MV, Amargós-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29:252–65.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

RH contributed to the conception, acquisition, analysis, and interpretation of data, as well as drafting and revisions of the paper. MEM contributed to the conception and interpretation of data, as well as drafting, revisions, and final approval of the paper. PB contributed to the conception and interpretation of data, as well as drafting, revisions, and final approval of the paper.

Corresponding author

Correspondence to Rami Hamati.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamati, R., El Mansari, M. & Blier, P. Serotonin-2B receptor antagonism increases the activity of dopamine and glutamate neurons in the presence of selective serotonin reuptake inhibition. Neuropsychopharmacol. (2020). https://doi.org/10.1038/s41386-020-0723-y

Download citation