Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Δ9-Tetrahydrocannabinol (THC) impairs visual working memory performance: a randomized crossover trial

Abstract

With the increasing prevalence of legal cannabis use and availability, there is an urgent need to identify cognitive impairments related to its use. It is widely believed that cannabis, or its main psychoactive component Δ9-tetrahydrocannabinol (THC), impairs working memory, i.e., the ability to temporarily hold information in mind. However, our review of the literature yielded surprisingly little empirical support for an effect of THC or cannabis on working memory. We thus conducted a study with three main goals: (1) quantify the effect of THC on visual working memory in a well-powered sample, (2) test the potential role of cognitive effects (mind wandering and metacognition) in disrupting working memory, and (3) demonstrate how insufficient sample size and task duration reduce the likelihood of detecting a drug effect. We conducted two double-blind, randomized crossover experiments in which healthy adults (N = 23, 23) performed a reliable and validated visual working memory task (the “Discrete Whole Report task”, 90 trials) after administration of THC (7.5 and/or 15 mg oral) or placebo. We also assessed self-reported “mind wandering” (Exp 1) and metacognitive accuracy about ongoing task performance (Exp 2). THC impaired working memory performance (d = 0.65), increased mind wandering (Exp 1), and decreased metacognitive accuracy about task performance (Exp 2). Thus, our findings indicate that THC does impair visual working memory, and that this impairment may be related to both increased mind wandering and decreased monitoring of task performance. Finally, we used a down-sampling procedure to illustrate the effects of task length and sample size on power to detect the acute effect of THC on working memory.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Stimuli used in the whole report task.
Fig. 2: Mean working memory performance.
Fig. 3: Illustrations of the effects of THC (15 mg) vs. placebo on working memory performance (N = 46, Exp 1 and Exp 2 combined).
Fig. 4: Changes to mind wandering and metacognitive accuracy after THC or placebo.
Fig. 5: Power analysis predicts the distribution of p-values for published studies.

References

  1. 1.

    Baddeley AD, Hitch G. Working Memory. In: Psychology of Learning and Motivation. Elsevier, pp. 47–89. 1974. http://linkinghub.elsevier.com/retrieve/pii/S0079742108604521. Accessed 24 Aug 2016.

  2. 2.

    Cowan N, Elliott EM, Scott Saults J, Morey CC, Mattox S, Hismjatullina A, Conway ARA. On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cogn Psychol. 2005;51:42–100.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Vadhan NP, Serper MR, Haney M. Effects of Δ-THC on working memory: implications for schizophrenia? Prim Psychiatry. 2009;16:51–99.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ranganathan M, D’Souza DC. The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology. 2006;188:425–44.

    CAS  PubMed  Google Scholar 

  5. 5.

    Curran HV, Freeman TP, Mokrysz C, Lewis DA, Morgan CJA, Parsons LH. Keep off the grass? Cannabis, cognition and addiction. Nat Rev Neurosci. 2016;17:293–306.

    CAS  PubMed  Google Scholar 

  6. 6.

    Chait LD, Pierri J. Effects of smoked marijuana on human performance: a critical review. In: Murphy L and Bartke A, editors. Marijuana/cannabinoids: neurobiology and neurophysiology. Boca Raton, FL, USA: CRC Press; 1992. p. 387–423.

  7. 7.

    Broyd SJ, van Hell HH, Beale C, Yücel M, Solowij N. Acute and chronic effects of cannabinoids on human cognition—a systematic review. Biol Psychiatry. 2016;79:557–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zuurman L, Ippel AE, Moin E, van Gerven JMA. Biomarkers for the effects of cannabis and THC in healthy volunteers. Br J Clin Pharmacol. 2009;67:5–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Easterbrook PJ, Gopalan R, Berlin JA, Matthews DR. Publication bias in clinical research. Lancet. 1991;337:867–72.

    CAS  PubMed  Google Scholar 

  10. 10.

    Malički M, Marušić A. Is there a solution to publication bias? Researchers call for changes in dissemination of clinical research results. J Clin Epidemiol. 2014;67:1103–10.

    PubMed  Google Scholar 

  11. 11.

    Rosenthal R. The file drawer problem and tolerance for null results. Psychological Bull. 1979;86:638–41.

    Google Scholar 

  12. 12.

    Wechsler D. The measurement of adult intelligence. 1st ed. Baltimore, MD, USA: Williams & Wilkins Co.; 1939.

  13. 13.

    Broadbent DE. The magic number seven after fifteen years. In: Kennedy A and Wilkes A, editors. Studies In Long Term Memory. London: John Wiley & Sons; 1975.

  14. 14.

    Miller GA. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Rev. 1956;63:81–97.

    CAS  Google Scholar 

  15. 15.

    Xu Z, Adam KCS, Fang X, Vogel EK. The reliability and stability of visual working memory capacity. Behav Res Methods. 2017;50:576–88.

  16. 16.

    Pailian H, Halberda J. The reliability and internal consistency of one-shot and flicker change detection for measuring individual differences in visual working memory capacity. Mem Cognition. 2015;43:397–420.

    Google Scholar 

  17. 17.

    Adam KCS, Mance I, Fukuda K, Vogel EK. The contribution of attentional lapses to individual differences in visual working memory capacity. J Cogn Neurosci. 2015;27:1601–16.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Adam KCS, Vogel EK. Improvements to visual working memory performance with practice and feedback. PLoS ONE. 2018;13:e0203279.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Unsworth N, Fukuda K, Awh E, Vogel EK. Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cogn Psychol. 2014;71:1–26.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Waris O, Soveri A, Ahti M, Hoffing RC, Ventus D, Jaeggi SM et al. A latent factor analysis of working memory measures using large-scale data. Front Psychol. 2017. http://journal.frontiersin.org/article/10.3389/fpsyg.2017.01062/full. Accessed 12 Nov 2018.

  21. 21.

    Gold JM, Hahn B, Zhang WW, Robinson BM, Kappenman ES, Beck VM, Luck SJ. Reduced capacity but spared precision and maintenance of working memory representations in schizophrenia. Arch Gen Psychiatry. 2010;67:570.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lee E-Y, Cowan N, Vogel EK, Rolan T, Valle-Inclan F, Hackley SA. Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain. 2010;133:2677–89.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gold JM, Wilk CM, McMahon RP, Buchanan RW, Luck SJ. Working memory for visual features and conjunctions in schizophrenia. J Abnorm Psychol. 2003;112:61–71.

    PubMed  Google Scholar 

  24. 24.

    Jeneson A, Wixted JT, Hopkins RO, Squire LR. Visual working memory capacity and the medial temporal lobe. J Neurosci. 2012;32:3584–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    McCollough AW, Machizawa MG, Vogel EK. Electrophysiological measures of maintaining representations in visual working memory. Cortex. 2007;43:77–94.

    PubMed  Google Scholar 

  26. 26.

    Adam KCS, Robison MK, Vogel EK. Contralateral delay activity tracks fluctuations in working memory performance. J Cogn Neurosci. 2018;30:1229–40.

  27. 27.

    Xu Y, Chun MM. Dissociable neural mechanisms supporting visual short-term memory for objects. Nature. 2006;440:91–5.

    CAS  PubMed  Google Scholar 

  28. 28.

    Todd JJ, Marois R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature. 2004;428:751–4.

    CAS  PubMed  Google Scholar 

  29. 29.

    Vogel EK, Machizawa MG. Neural activity predicts individual differences in visual working memory capacity. Nature. 2004;428:748–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Reinhart RMG, Heitz RP, Purcell BA, Weigand PK, Schall JD, Woodman GF. Homologous mechanisms of visuospatial working memory maintenance in macaque and human: properties and sources. J Neurosci. 2012;32:7711–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Huang L. Visual working memory is better characterized as a distributed resource rather than discrete slots. J Vis. 2010;10:8–8.

    PubMed  Google Scholar 

  32. 32.

    Wilken P, Ma WJ. A detection theory account of change detection. J Vis. 2004;4:1120–35.

    PubMed  Google Scholar 

  33. 33.

    Zhang W, Luck SJ. Discrete fixed-resolution representations in visual working memory. Nature. 2008;453:233–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Pashler H. Familiarity and visual change detection. Percept Psychophys. 1988;44:369–78.

    CAS  PubMed  Google Scholar 

  35. 35.

    Luck SJ, Vogel EK. The capacity of visual working memory for features and conjunctions. Nature. 1997;390:279–81.

    CAS  PubMed  Google Scholar 

  36. 36.

    Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958;55:352–8.

    CAS  PubMed  Google Scholar 

  37. 37.

    Adam KCS, Vogel EK. Reducing failures of working memory with performance feedback. Psychonomic Bull Rev. 2016;23:1520–7.

    Google Scholar 

  38. 38.

    deBettencourt MT, Keene PA, Awh E, Vogel EK. Real-time triggering reveals concurrent lapses of attention and working memory. Nat Hum Behav. 2019;3:808–16.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Smallwood J, Schooler JW. The restless mind. Psychol Bull. 2006;132:946–58.

    PubMed  Google Scholar 

  40. 40.

    Sayette MA, Schooler JW, Reichle ED. Out for a smoke: the impact of cigarette craving on zoning out during reading. Psychol Sci. 2010;21:26–30.

    PubMed  Google Scholar 

  41. 41.

    Sayette MA, Reichle ED, Schooler JW. Lost in the sauce: the effects of alcohol on mind wandering. Psychological Sci. 2009;20:747–52.

    Google Scholar 

  42. 42.

    Spronk D, Dumont GJH, Verkes RJ, de Bruijn ERA. Acute effects of delta-9-tetrahydrocannabinol on performance monitoring in healthy volunteers. Front. Behav. Neurosci. 2011. http://journal.frontiersin.org/article/10.3389/fnbeh.2011.00059/abstract. Accessed 31 March 2020].

  43. 43.

    Kowal MA, van Steenbergen H, Colzato LS, Hazekamp A, van der Wee NJA, Manai M, Durieux J, Hommel B. Dose-dependent effects of cannabis on the neural correlates of error monitoring in frequent cannabis users. Eur Neuropsychopharmacol. 2015;25:1943–53.

    CAS  PubMed  Google Scholar 

  44. 44.

    Adam KCS, Vogel EK. Confident failures: lapses of working memory reveal a metacognitive blind spot. Atten, Percept, Psychophys. 2017;79:1506–23.

    Google Scholar 

  45. 45.

    McDonald J, Schleifer L, Richards JB, de Wit H. Effects of THC on behavioral measures of impulsivity in humans. Neuropsychopharmacology. 2003;28:1356–65.

    CAS  PubMed  Google Scholar 

  46. 46.

    Curran V, Brignell C, Fletcher S, Middleton P, Henry J. Cognitive and subjective dose-response effects of acute oral Δ 9 -tetrahydrocannabinol (THC) in infrequent cannabis users. Psychopharmacology. 2002;164:61–70.

    CAS  PubMed  Google Scholar 

  47. 47.

    Wachtel SR, ElSohly MA, Ross SA, Ambre J, de Wit H. Comparison of the subjective effects of Δ9-tetrahydrocannabinol and marijuana in humans. Psychopharmacology. 2002;161:331–9.

    CAS  PubMed  Google Scholar 

  48. 48.

    Pabon E, de Wit H. Developing a phone-based measure of impairment after acute oral ∆9 -tetrahydrocannabinol. J Psychopharmacol. 2019;33:1160–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Doss MK, Weafer J, Gallo DA, de Wit H. Δ9-Tetrahydrocannabinol at retrieval drives false recollection of neutral and emotional memories. Biol Psychiatry. 2018;84:743–50. http://linkinghub.elsevier.com/retrieve/pii/S000632231831477X.

  50. 50.

    Doss MK, Weafer J, Gallo DA, de Wit H. Δ9-Tetrahydrocannabinol during encoding impairs perceptual details yet spares context effects on episodic memory. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:110–8.

    PubMed  Google Scholar 

  51. 51.

    Chait LD, Fischman MW, Schuster CR. ‘Hangover’ effects the morning after marijuana smoking. Drug Alcohol Depend. 1985;15:229–38.

    CAS  PubMed  Google Scholar 

  52. 52.

    Martin WR, Sloan JW, Sapira JD, Jasinski DR. Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther. 1971;12:245–58.

    CAS  PubMed  Google Scholar 

  53. 53.

    Folstein MF, Luria R. Reliability, validity, and clinical application of the visual analogue mood scale. Psychological Med. 1973;3:479.

    CAS  Google Scholar 

  54. 54.

    Morean ME, de Wit H, King AC, Sofuoglu M, Rueger SY, O’Malley SS. The drug effects questionnaire: psychometric support across three drug types. Psychopharmacology. 2013;227:177–92.

    CAS  PubMed  Google Scholar 

  55. 55.

    Ward AF, Wegner DM. Mind-blanking: when the mind goes away. Front Psychol. 2013. http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00650/abstract. Accessed 26 March 2020.

  56. 56.

    JASP Team. 2019. JASP. Available at: https://jasp-stats.org. Accessed 1 Jan 2020.

  57. 57.

    Tinklenberg JR, Melges FT, Hollister LE, Gillespie HK. Marijuana and immediate memory. Nature. 1970;226:1171–2.

    CAS  PubMed  Google Scholar 

  58. 58.

    Melges FT, Tinklenberg JR, Hollister LE, Gillespie HK. Marihuana and temporal disintegration. Science. 1970;168:1118–20.

    CAS  PubMed  Google Scholar 

  59. 59.

    Ballard ME, de Wit H. Combined effects of acute, very-low-dose ethanol and delta(9)-tetrahydrocannabinol in healthy human volunteers. Pharmacol Biochem Behav. 2011;97:627–31.

    CAS  PubMed  Google Scholar 

  60. 60.

    Casswell S, Marks DF. Cannabis and temporal disintegration in experienced and naive subjects. Science. 1973;179:803–5.

    CAS  PubMed  Google Scholar 

  61. 61.

    Hooker WD, Jones RT. Increased susceptibility to memory intrusions and the Stroop interference effect during acute marijuana intoxication. Psychopharmacology. 1987;91:20–4.

    CAS  PubMed  Google Scholar 

  62. 62.

    Chait LD, Corwin RL, Johanson CE. A cumulative dosing procedure for administering marijuana smoke to humans. Pharmacol Biochem Behav. 1988;29:553–7.

    CAS  PubMed  Google Scholar 

  63. 63.

    Heishman SJ, Stitzer ML, Yingling JE. Effects of tetrahydrocannabinol content on marijuana smoking behavior, subjective reports, and performance. Pharmacol Biochem Behav. 1989;34:173–9.

    CAS  PubMed  Google Scholar 

  64. 64.

    Zacny JP, Chait LD. Response to marijuana as a function of potency and breathhold duration. Psychopharmacology. 1991;103:223–6.

    CAS  PubMed  Google Scholar 

  65. 65.

    Azorlosa JL, Heishman SJ, Stitzer ML, Mahaffey JM. Marijuana smoking: effect of varying delta 9-tetrahydrocannabinol content and number of puffs. J Pharmacol Exp Ther 1992;261:114–22.

    CAS  PubMed  Google Scholar 

  66. 66.

    Chait LD, Perry JL. Acute and residual effects of alcohol and marijuana, alone and in combination, on mood and performance. Psychopharmacology. 1994;115:340–9.

    CAS  PubMed  Google Scholar 

  67. 67.

    Azorlosa JL, Greenwald MK, Stitzer ML. Marijuana smoking: effects of varying puff volume and breathhold duration. J Pharmacol Exp Ther 1995;272:560–9.

    CAS  PubMed  Google Scholar 

  68. 68.

    Hart C. Effects of acute smoked marijuana on complex cognitive performance. Neuropsychopharmacology. 2001;25:757–65.

    CAS  PubMed  Google Scholar 

  69. 69.

    Morrison PD, Zois V, McKeown DA, Lee TD, Holt DW, Powell JF, Kapur S, Murray RM. The acute effects of synthetic intravenous Δ9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychological Med. 2009;39:1607.

    CAS  Google Scholar 

  70. 70.

    Dornbush RL, Kokkevi A. Acute effects of cannabis on cognitive, perceptual, and motor performance in chronic Hashish users. Ann NY Acad Sci. 1976;282:313–22.

    CAS  PubMed  Google Scholar 

  71. 71.

    Greenwald MK, Stitzer ML. Antinociceptive, subjective and behavioral effects of smoked marijuana in humans. Drug Alcohol Depend. 2000;59:261–75.

    CAS  PubMed  Google Scholar 

  72. 72.

    Tinklenberg JR. Marihuana and alcohol: time production and memory functions. Arch Gen Psychiatry. 1972;27:812.

    CAS  PubMed  Google Scholar 

  73. 73.

    Galanter M. δ9-Transtetrahydrocannabinol and natural marihuana: a controlled comparison. Arch Gen Psychiatry. 1973;28:278.

    CAS  PubMed  Google Scholar 

  74. 74.

    Cappell HD, Pliner PL. Volitional control of marijuana intoxication: a study of the ability to “come down” on command. J Abnorm Psychol. 1973;82:428–34.

    CAS  PubMed  Google Scholar 

  75. 75.

    Fant RV, Heishman SJ, Bunker EB, Pickworth WB. Acute and residual effects of marijuana in humans. Pharmacol Biochem Behav. 1998;60:777–84.

    CAS  PubMed  Google Scholar 

  76. 76.

    Ramesh D, Haney M, Cooper ZD. Marijuana’s dose-dependent effects in daily marijuana smokers. Exp Clin Psychopharmacol. 2013;21:287–93.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Lee J, Park S. Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol. 2005;114:599–611.

    PubMed  Google Scholar 

  78. 78.

    Carter E, Wang X-J. Cannabinoid-mediated disinhibition and working memory: dynamical interplay of multiple feedback mechanisms in a continuous attractor model of prefrontal cortex. Cereb Cortex. 2007;17:i16–26.

    PubMed  Google Scholar 

  79. 79.

    Manoach DS. Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophrenia Res. 2003;60:285–98.

    Google Scholar 

  80. 80.

    Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, Velligan DI. Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp. 2005;25:60–9.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Van Snellenberg JX, Torres IJ, Thornton AE. Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. Neuropsychology. 2006;20:497–510.

    PubMed  Google Scholar 

  82. 82.

    Hahn B, Robinson BM, Leonard CJ, Luck SJ, Gold JM. Posterior parietal cortex dysfunction is central to working memory storage and broad cognitive deficits in schizophrenia. J Neurosci. 2018;38:8378–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283:1657–61.

    CAS  PubMed  Google Scholar 

  84. 84.

    D’Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol. 2015;66:115–42.

    PubMed  Google Scholar 

  85. 85.

    Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013;49:1195–205.

    PubMed  Google Scholar 

  86. 86.

    Hathaway AD. Cannabis effects and dependency concerns in long-term frequent users: a missing piece of the public health puzzle. Addiction Res Theory. 2003;11:441–58.

    Google Scholar 

  87. 87.

    Osborne GB, Fogel C. Understanding the motivations for recreational marijuana use among adult Canadians. Subst Use Misuse. 2008;43:539–72.

    PubMed  Google Scholar 

  88. 88.

    Bossong MG, Jansma JM, van Hell HH, Jager G, Kahn RS, Ramsey NF. Default mode network in the effects of Δ9-tetrahydrocannabinol (THC) on human executive function. PLoS ONE. 2013;8:e70074.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Wall MB, Pope R, Freeman TP, Kowalczyk OS, Demetriou L, Mokrysz C, Hindocha C, Lawn W, Bloomfield MA, Freeman AM, et al. Dissociable effects of cannabis with and without cannabidiol on the human brain’s resting-state functional connectivity. J Psychopharmacol. 2019;33:822–30.

    CAS  PubMed  Google Scholar 

  90. 90.

    Hester R, Nestor L, Garavan H. Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacol. 2009;34:2450–8.

    Google Scholar 

  91. 91.

    Vandrey R, Herrmann ES, Mitchell JM, Bigelow GE, Flegel R, LoDico C, Cone EJ. Pharmacokinetic profile of oral cannabis in humans: blood and oral fluid disposition and relation to pharmacodynamic outcomes. J Anal Toxicol. 2017;41:83–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Engle RW, Tuholski SW, Laughlin JE, Conway AR. Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J Exp Psychol Gen. 1999;128:309–31.

    PubMed  Google Scholar 

  93. 93.

    Conway ARA, Cowan N, Bunting MF, Therriault DJ, Minkoff SRB. A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence. 2002;30:163–83.

    Google Scholar 

  94. 94.

    Unsworth N, Fukuda K, Awh E, Vogel EK. Working memory delay activity predicts individual differences in cognitive abilities. J Cogn Neurosci. 2015;27:853–65.

    PubMed  Google Scholar 

  95. 95.

    Jaeggi SM, Buschkuehl M, Perrig WJ, Meier B. The concurrent validity of the N-back task as a working memory measure. Memory. 2010;18:394–412.

    PubMed  Google Scholar 

  96. 96.

    Unsworth N, Engle RW. Simple and complex memory spans and their relation to fluid abilities: evidence from list-length effects. J Mem Lang. 2006;54:68–80.

    Google Scholar 

  97. 97.

    Miller KM, Price CC, Okun MS, Montijo H, Bowers D. Is the N-back task a valid neuropsychological measure for assessing working memory? Arch Clin Neuropsychol. 2009;24:711–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Redick TS, Lindsey DRB. Complex span and n-back measures of working memory: a meta-analysis. Psychonomic Bull Rev. 2013;20:1102–13.

    Google Scholar 

  99. 99.

    Kane MJ, Conway ARA, Miura TK, Colflesh GJH. Working memory, attention control, and the n-back task: a question of construct validity. J Exp Psychol: Learn Mem Cognition. 2007;33:615–22.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

MD and EP collected data. KA performed analyses and drafted the manuscript. KA, MD, EP, EV, and HdW planned the experiments and revised the manuscript.

Corresponding author

Correspondence to Kirsten C. S. Adam.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adam, K.C.S., Doss, M.K., Pabon, E. et al. Δ9-Tetrahydrocannabinol (THC) impairs visual working memory performance: a randomized crossover trial. Neuropsychopharmacol. 45, 1807–1816 (2020). https://doi.org/10.1038/s41386-020-0690-3

Download citation

Further reading

Search

Quick links