Effects of MDMA on attention to positive social cues and pleasantness of affective touch

Article metrics


The psychostimulant drug ±3,4-methylenedioxymethamphetamine (MDMA) reportedly produces distinctive feelings of empathy and closeness with others. MDMA increases social behavior in animal models and has shown promise in psychiatric disorders, such as autism spectrum disorder (ASD) and post-traumatic stress disorder (PTSD). How it produces these prosocial effects is not known. This behavioral and psychophysiological study examined the effects of MDMA, compared with the prototypical stimulant methamphetamine (MA), on two measures of social behavior in healthy young adults: (i) responses to socially relevant, “affective” touch, and (ii) visual attention to emotional faces. Men and women (N = 36) attended four sessions in which they received MDMA (0.75 or 1.5 mg/kg), MA (20 mg), or a placebo in randomized order under double-blind conditions. Responses to experienced and observed affective touch (i.e., being touched or watching others being touched) were assessed using facial electromyography (EMG), a proxy of affective state. Responses to emotional faces were assessed using electrooculography (EOG) in a measure of attentional bias. Subjective ratings were also included. We hypothesized that MDMA, but not MA, would enhance the ratings of pleasantness and psychophysiological responses to affective touch and increase attentional bias toward positive facial expressions. Consistent with this, we found that MDMA, but not MA, selectively enhanced ratings of pleasantness of experienced affective touch. Neither drug altered the ratings of pleasantness of observed touch. On the EOG measure of attentional bias, MDMA, but not MA, increased attention toward happy faces. These results provide new evidence that MDMA can enhance the experience of positive social interactions; in this case, pleasantness of physical touch and attentional bias toward positive facial expressions. The findings are consistent with evidence that the prosocial effects are unique to MDMA relative to another stimulant. Understanding the behavioral and neurobiological processes underlying the distinctive social effects of MDMA is a key step to developing the drug for psychiatric disorders.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2


  1. 1.

    Peroutka SJ, Newman H, Harris H. Subjective effects of 3, 4-methylenedioxymethamphetamine in recreational users. Neuropsychopharmacology. 1988;1:273–7.

  2. 2.

    Siegel RK. MDMA: Nonmedical use and intoxication. J Psychoact Drugs. 1986;18:349–54.

  3. 3.

    Edsinger E, Dölen G. A conserved role for serotonergic neurotransmission in mediating social behavior in octopus. Curr Biol. 2018;28:3136–42.

  4. 4.

    Pitts EG, Minerva AR, Oliver EB, Howell L. MDMA increases affiliative behaviors and vocalizations in nonhuman primates in a 5-HT2A receptor-dependent manner. Drug Alcohol Depend. 2017;171:e166–7.

  5. 5.

    Ramos L, Hicks C, Caminer A, Goodwin J, McGregor IS. Oxytocin and MDMA (‘Ecstasy’) enhance social reward in rats. Psychopharmacology. 2015;232:2631–41.

  6. 6.

    Thompson M, Hunt G, McGregor I. Neural correlates of MDMA (“Ecstasy”)-induced social interaction in rats. Soc Neurosci. 2009;4:60–72.

  7. 7.

    Harris DS, Baggott M, Mendelson JH, Mendelson JE, Jones RT. Subjective and hormonal effects of 3, 4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology. 2002;162:396–405.

  8. 8.

    Bedi G, Hyman D, de Wit H. Is ecstasy an “empathogen”? Effects of ±3, 4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others. Biol psychiatry. 2010;68:1134–40.

  9. 9.

    Bedi G, Phan KL, Angstadt M, de Wit H. Effects of MDMA on sociability and neural response to social threat and social reward. Psychopharmacology. 2009;207:73–83.

  10. 10.

    Schmid Y, Hysek CM, Simmler LD, Crockett MJ, Quednow BB, Liechti ME. Differential effects of MDMA and methylphenidate on social cognition. J Psychopharmacol. 2014;28:847–56.

  11. 11.

    Bershad AK, Miller MA, Baggott MJ, de Wit H. The effects of MDMA on socio-emotional processing: does MDMA differ from other stimulants? J Psychopharmacol. 2016a;30:1248–58.

  12. 12.

    Kamilar-Britt P, Bedi G. The prosocial effects of 3, 4-methylenedioxymethamphetamine (MDMA): controlled studies in humans and laboratory animals. Neurosci Biobehav Rev. 2015;57:433–46.

  13. 13.

    Gallace A, Spence C. The science of interpersonal touch: an overview. Neurosci Biobehav Rev. 2010;34:246–59.

  14. 14.

    Abraira VE, Ginty DD. The sensory neurons of touch. Neuron. 2013;79:618–39.

  15. 15.

    Olausson H, Wessberg J, McGlone F, Vallbo Å. The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev. 2010;34:185–91.

  16. 16.

    Löken LS, Wessberg J, McGlone F, Olausson H. Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci. 2009;12:547.

  17. 17.

    Mayo LM, Lindé J, Olausson H, Heilig M. Putting a good face on touch: facial expression reflects the affective valence of caress-like touch across modalities. Biol Psychol. 2018;137:83–90.

  18. 18.

    Ree A, Mayo LM, Leknes S, Sailer U. Touch targeting C-tactile afferent fibers has a unique physiological pattern: a combined electrodermal and facial electromyography study. Biol Psychol. 2018;140:55–63.

  19. 19.

    Pawling R, Cannon PR, McGlone FP, Walker SC. C-tactile afferent stimulating touch carries a positive affective value. PloS ONE. 2017;12:e0173457.

  20. 20.

    Björnsdotter M, Olausson H. Vicarious responses to social touch in posterior insular cortex are tuned to pleasant caressing speeds. J Neurosci. 2011;31:9554–62.

  21. 21.

    Francis S, Rolls ET, Bowtell R, McGlone F, O’Doherty J, Browning A, et al. The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport. 1999;10:453–9.

  22. 22.

    McGlone F, Wessberg J, Olausson H. Discriminative and affective touch: sensing and feeling. Neuron. 2014;82:737–55.

  23. 23.

    Olausson H, Lamarre Y, Backlund H, Morin C, Wallin B, Starck G, et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci. 2002;5:900.

  24. 24.

    Perini I, Olausson H. Seeking pleasant touch: neural correlates of behavioral preferences for skin stroking. Front Behav Neurosci. 2015;9:8.

  25. 25.

    Trotter PD, McGlone F, McKie S, McFarquhar M, Elliott R, Walker SC, et al. Effects of acute tryptophan depletion on central processing of CT‐targeted and discriminatory touch in humans. Eur J Neurosci. 2016;44:2072–83.

  26. 26.

    Uvnäs-Moberg K. Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology. 1998;23:819–35.

  27. 27.

    Walker S, McGlone F. The social brain: neurobiological basis of affiliative behaviours and psychological well-being. Neuropeptides. 2013;47:379–93.

  28. 28.

    Walker S, McGlone F. C-Tactile Afferents: the mediators of oxytocin release during affiliative interaction? Neuropeptides. 2017a;65:135.

  29. 29.

    Klein H, Elifson KW, Sterk CE. Young adult ecstasy users’ enhancement of the effects of their ecstasy use. J Psychoact drugs. 2009;41:113–20.

  30. 30.

    Morrison I, Löken LS, Minde J, Wessberg J, Perini I, Nennesmo I, et al. Reduced C-afferent fibre density affects perceived pleasantness and empathy for touch. Brain. 2011;134:1116–26.

  31. 31.

    Walker SC, Trotter PD, Woods A, McGlone F. Vicarious ratings of social touch reflect the anatomical distribution & velocity tuning of C-tactile afferents: a hedonic homunculus? Behav brain Res. 2017b;320:91–96.

  32. 32.

    Bilderbeck AC, McCabe C, Wakeley J, McGlone F, Harris T, Cowen PJ, et al. Serotonergic activity influences the cognitive appraisal of close intimate relationships in healthy adults. Biol psychiatry. 2011;69:720–5.

  33. 33.

    Murphy S, Downham C, Cowen P, Harmer C. Direct effects of diazepam on emotional processing in healthy volunteers. Psychopharmacology. 2008;199:503.

  34. 34.

    Frewen PA, Dozois DJ, Joanisse MF, Neufeld RW. Selective attention to threat versus reward: meta-analysis and neural-network modeling of the dot-probe task. Clin Psychol Rev. 2008;28:308–38.

  35. 35.

    Domes G, Sibold M, Schulze L, Lischke A, Herpertz SC, Heinrichs M. Intranasal oxytocin increases covert attention to positive social cues. Psychol Med. 2013;43:1747–53.

  36. 36.

    Kim Y-R, Oh S-M, Corfield F, Jeong D-W, Jang E-Y, Treasure J. Intranasal oxytocin lessens the attentional bias to adult negative faces: a double blind within-subject experiment. Psychiatry Investig. 2014;11:160–6.

  37. 37.

    Thompson M, Callaghan P, Hunt G, Cornish J, McGregor I. A role for oxytocin and 5-HT-1A receptors in the prosocial effects of 3, 4 methylenedioxymethamphetamine (“ecstasy”). Neuroscience. 2007;146:509–14.

  38. 38.

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, 2013.

  39. 39.

    Mayo LM, Fraser D, Childs E, Momenan R, Hommer DW, de Wit H, et al. Conditioned preference to a methamphetamine-associated contextual cue in humans. Neuropsychopharmacology. 2013;38:921–9.

  40. 40.

    Bershad AK, Weafer JJ, Kirkpatrick MG, Wardle MC, Miller MA, de Wit H. Oxytocin receptor gene variation predicts subjective responses to MDMA. Soc Neurosci. 2016b;11:592–9.

  41. 41.

    Wardle MC, Kirkpatrick MG, de Wit H. ‘Ecstasy’as a social drug: MDMA preferentially affects responses to emotional stimuli with social content. Soc Cogn Affect Neurosci. 2014b;9:1076–181.

  42. 42.

    Kirkpatrick MG, Lee R, Wardle MC, Jacob S, de Wit H. Effects of MDMA and intranasal oxytocin on social and emotional processing. Neuroopsychopharmacology. 2014;39:1654–63.

  43. 43.

    Ackerley R, Wasling HB, Liljencrantz J, Olausson H, Johnson RD, Wessberg J. Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J Neurosci. 2014;34:2879–83.

  44. 44.

    Triscoli C, Olausson H, Sailer U, Ignell H, Croy I. CT-optimized skin stroking delivered by hand or robot is comparable. Front Behav Neurosci. 2013;7:208.

  45. 45.

    Dimberg U, Thunberg M, Elmehed K. Unconscious facial reactions to emotional facial expressions. Psychol Sci. 2000;11:86–89.

  46. 46.

    Lang PJ, Greenwald MK, Bradley MM, Hamm AO. Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology. 1993;30:261–73.

  47. 47.

    Garner M, Mogg K, Bradley BP. Orienting and maintenance of gaze to facial expressions in social anxiety. J Abnorm Psychol. 2006;115:760.

  48. 48.

    Goeleven E, De Raedt R, Leyman L, Verschuere B. The Karolinska directed emotional faces: a validation study. Cogn Emot. 2008;22:1094–118.

  49. 49.

    Lim J, Dinges DF. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull. 2010;136:375.

  50. 50.

    Croy I, Luong A, Triscoli C, Hofmann E, Olausson H, Sailer U. Interpersonal stroking touch is targeted to C tactile afferent activation. Behav Brain Res. 2016;297:37–40.

  51. 51.

    Morrison I. ALE meta‐analysis reveals dissociable networks for affective and discriminative aspects of touch. Hum brain Mapp. 2016;37:1308–20.

  52. 52.

    Bjornsdotter M, Lebedev A, Roseman L, Erritzoe D, Feilding A, Petrovic P, et al. Effects of acute 3,4-methyle nedioxymethamphetamine (MDMA) on tactile network connectivity. Hum Brain Mapp. 2017; Vancouver, BC.

  53. 53.

    Winocur E, Gavish A, Voikovitch M, Emodi-Perlman A, Eli I. Drugs and bruxism: a critical review. J Orofac pain. 2003;17:99–111.

  54. 54.

    Morley KC, Arnold JC, McGregor IS. Serotonin (1A) receptor involvement in acute 3, 4-methylenedioxymethamphetamine (MDMA) facilitation of social interaction in the rat. Prog NeuroPsychopharmacol Biol Psychiatry. 2005;29:648–57.

  55. 55.

    Preller KH, Pokorny T, Hock A, Kraehenmann R, Stämpfli P, Seifritz E, et al. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc Natl Acad Sci USA. 2016;113(18):5119–24.

  56. 56.

    Bilderbeck AC, Wakeley J, Godlewska BR, McGlone F, Harris T, Cowen PJ, et al. Preliminary evidence that sub-chronic citalopram triggers the re-evaluation of value in intimate partnerships. Soc Cogn Affect Neurosci. 2013;9:1419–25.

  57. 57.

    Dumont G, Sweep F, Van der Steen R, Hermsen R, Donders A, Touw D, et al. Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3, 4-methylenedioxymethamphetamine) administration. Soc Neurosci. 2009;4:359–66.

  58. 58.

    Hysek CM, Domes G, Liechti ME. MDMA enhances “mind reading” of positive emotions and impairs “mind reading” of negative emotions. Psychopharmacology. 2012a;222:293–302.

  59. 59.

    Kirkpatrick MG, Francis SM, Lee R, de Wit H, Jacob S. Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans. Psychoneuroendocrinology. 2014a;46:23–31.

  60. 60.

    Wolff K, Tsapakis E, Winstock A, Hartley D, Holt D, Forsling M, et al. Vasopressin and oxytocin secretion in response to the consumption of ecstasy in a clubbing population. J Psychopharmacol. 2006;20:400–10.

  61. 61.

    Kuypers KP, de la Torre R, Farre M, Yubero-Lahoz S, Dziobek I, Van den Bos W, et al. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT 1a receptor activation. PLoS ONE. 2014;9:e100719.

  62. 62.

    Ellingsen D-M, Wessberg J, Chelnokova O, Olausson H, Laeng B, Leknes S. In touch with your emotions: oxytocin and touch change social impressions while others’ facial expressions can alter touch. Psychoneuroendocrinology. 2014;39:11–20.

  63. 63.

    Scheele D, Kendrick KM, Khouri C, Kretzer E, Schläpfer TE, Stoffel-Wagner B, et al. An oxytocin-induced facilitation of neural and emotional responses to social touch correlates inversely with autism traits. Neuropsychopharmacology. 2014;39:2078.

  64. 64.

    Leng G, Ludwig M. Intranasal oxytocin: myths and delusions. Biol psychiatry. 2016;79:243–50.

  65. 65.

    Bershad AK, Kirkpatrick MG, Seiden JA, de Wit H. Effects of acute doses of prosocial drugs methamphetamine and alcohol on plasma oxytocin levels. J Clin Psychopharmacol. 2015;35:308–12.

  66. 66.

    Liechti ME, Vollenweider FX. Which neuroreceptors mediate the subjective effects of MDMA in humans? A summary of mechanistic studies. Hum Psychopharmacol: Clin Exp. 2001;16:589–98.

  67. 67.

    Liechti ME, Baumann C, Gamma A, Vollenweider FX. Acute psychological effects of 3, 4-methylenedioxymethamphetamine (MDMA,“Ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology. 2000;22:513.

  68. 68.

    Farré M, Abanades S, Roset PN, Peiro AM, Torrens M, O’Mathúna B, et al. Pharmacological interaction between 3, 4-methylenedioxymethamphetamine (ecstasy) and paroxetine: pharmacological effects and pharmacokinetics. J Pharmacol Exp Ther. 2007;323:954–62.

  69. 69.

    Hysek C, Simmler L, Ineichen M, Grouzmann E, Hoener M, Brenneisen R, et al. The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA (“ecstasy”) in humans. Clin Pharmacol Ther. 2011;90:246–55.

  70. 70.

    Hysek CM, Simmler LD, Nicola VG, Vischer N, Donzelli M, Krähenbühl S, et al. Duloxetine inhibits effects of MDMA (“Ecstasy”) in vitro and in humans in a randomized placebo-controlled laboratory study. PloS ONE. 2012b;7:e36476.

  71. 71.

    Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R. The safety and efficacy of ±3, 4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol. 2011;25:439–52.

  72. 72.

    Danforth AL, Grob CS, Struble C, Feduccia AA, Walker N, Jerome L, et al. Reduction in social anxiety after MDMA-assisted psychotherapy with autistic adults: a randomized, double-blind, placebo-controlled pilot study. Psychopharmacology. 2018;235:3137–48.

  73. 73.

    Danforth AL, Struble CM, Yazar-Klosinski B, Grob CS. MDMA-assisted therapy: a new treatment model for social anxiety in autistic adults. Prog NeuroPsychopharmacol Biol Psychiatry. 2016;64:237–49.

  74. 74.

    Cascio C, McGlone F, Folger S, Tannan V, Baranek G, Pelphrey KA, et al. Tactile perception in adults with autism: a multidimensional psychophysical study. J autism Dev Disord. 2008;38:127–37.

  75. 75.

    Kaiser MD, Yang DY-J, Voos AC, Bennett RH, Gordon I, Pretzsch C, et al. Brain mechanisms for processing affective (and nonaffective) touch are atypical in autism. Cereb Cortex. 2015;26:2705–14.

  76. 76.

    Voos AC, Pelphrey KA, Kaiser MD. Autistic traits are associated with diminished neural response to affective touch. Soc Cogn Affect Neurosci. 2012;8:378–86.

  77. 77.

    Dziobek I, Rogers K, Fleck S, Bahnemann M, Heekeren HR, Wolf OT, et al. Dissociation of cognitive and emotional empathy in adults with Asperger syndrome using the Multifaceted Empathy Test (MET). J autism Dev Disord. 2008;38:464–73.

  78. 78.

    Hysek C, Schmid Y, Simmler L, Domes G, Heinrichs M, Eisenegger C, et al. MDMA enhances emotional empathy and prosocial behavior. Soc Cogn Affect Neurosci. 2014;9:1645–52.

  79. 79.

    Kuypers KP, Dolder PC, Ramaekers JG, Liechti ME. Multifaceted empathy of healthy volunteers after single doses of MDMA: a pooled sample of placebo-controlled studies. J Psychopharmacol. 2017;31:589–98.

  80. 80.

    Wardle MC, de Wit H. MDMA alters emotional processing and facilitates positive social interaction. Psychopharmacology. 2014a;231:1–11.

  81. 81.

    Bishop SJ. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci. 2007;11:307–16.

  82. 82.

    Rude SS, Wenzlaff RM, Gibbs B, Vane J, Whitney T. Negative processing biases predict subsequent depressive symptoms. Cogn Emot. 2002;16:423–40.

  83. 83.

    Litz BT, Orsillo SM, Kaloupek D, Weathers F. Emotional processing in posttraumatic stress disorder. J Abnorm Psychol. 2000;109:26.

  84. 84.

    Mithoefer M, Wagner M, Mithoefer A, Jerome L, Martin S, Yazar-Klosinski B. Durability of improvement in PTSD symptoms and absence of harmful effects or drug dependency after MDMA-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol. 2013;27:28–39.

  85. 85.

    Oehen P, Traber R, Widmer V, Schnyder U. A randomized, controlled pilot study of MDMA (±3, 4-Methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic Post-Traumatic Stress Disorder (PTSD). J Psychopharmacol. 2013;27:40–52.

  86. 86.

    Wagner MT, Mithoefer MC, Mithoefer AT, MacAulay RK, Jerome L, Yazar-Klosinski B, et al. Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy. J Psychopharmacol. 2017;31:967–74.

  87. 87.

    Kirk J, Doty P, De Wit H. Effects of expectancies on subjective responses to oral Δ9-tetrahydrocannabinol. Pharmacol Biochem Behav. 1998;59:287–93.

  88. 88.

    Mitchell SH, Laurent CL, De Wit H. Interaction of expectancy and the pharmacological effects ofd-amphetamine: subjective effects and self-administration. Psychopharmacology. 1996;125:371–8.

Download references


We would like to thank Dr. Royce Lee for his assistance in screening subjects for this study. We would also like to thank Rick Doblin and the Multidisciplinary Association for Psychedelic Studies (MAPS) for generously supplying the MDMA for this project.

Author information

Correspondence to Harriet de Wit.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supp Fig Legend

Supplemental Table 1. Mean values of subjective and behavioral measures

Supplemental Table 2. Subjective responses to the virtual touch task by location

Supplemental Figure 1A

Supplemental Figure 1B

Supplemental Figure 1C

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading