Goblet cell associated antigen passages support the induction and maintenance of oral tolerance

Abstract

Tolerance to innocuous antigens from the diet and the commensal microbiota is a fundamental process essential to health. Why tolerance is efficiently induced to substances arising from the hostile environment of the gut lumen is incompletely understood but may be related to how these antigens are encountered by the immune system. We observed that goblet cell associated antigen passages (GAPs), but not other pathways of luminal antigen capture, correlated with the acquisition of luminal substances by lamina propria (LP) antigen presenting cells (APCs) and with the sites of tolerance induction to luminal antigens. Strikingly this role extended beyond antigen delivery. The GAP function of goblet cells facilitated maintenance of pre-existing LP T regulatory cells (Tregs), imprinting LP-dendritic cells with tolerogenic properties, and facilitating LP macrophages to produce the immunomodulatory cytokine IL-10. Moreover, tolerance to dietary antigen was impaired in the absence of GAPs. Thus, by delivering luminal antigens, maintaining pre-existing LP Tregs, and imprinting tolerogenic properties on LP-APCs GAPs support tolerance to substances encountered in the hostile environment of the gut lumen.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Goblet cell associated antigen passages (GAPs) are present at the sites where tolerance to luminal substances is induced in the steady state.
Fig. 2: Goblet cells support antigen presenting cell acquisition of luminal antigen and CD4+ T cell responses to luminal antigen in the gut draining lymph nodes.
Fig. 3: The GAP function of goblet cells supports the acquisition of, and CD4+ T cell responses to, luminal antigen.
Fig. 4: GAPs support the maintenance and induction of pTregs.
Fig. 5: GAPs support the imprinting of LP-APCs.
Fig. 6: GAPs support tolerance to dietary antigen in the SI and tolerance to luminal antigens in the distal colon.

References

  1. 1.

    Pabst, O. & Mowat, A. M. Oral tolerance to food protein. Mucosal Immunol. 5, 232–239 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    CAS  PubMed  Google Scholar 

  4. 4.

    Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Persson, E. K. et al. IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38, 958–969 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Luda, K. M. et al. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44, 860–874 (2016).

    CAS  PubMed  Google Scholar 

  8. 8.

    Esterhazy, D. et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat. Immunol. 17, 545–555 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Spahn, T. W. et al. Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer's patches. Eur. J. Immunol. 32, 1109–1113 (2002).

    CAS  PubMed  Google Scholar 

  10. 10.

    Spahn, T. W. et al. Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. Eur. J. Immunol. 31, 1278–1287 (2001).

    CAS  PubMed  Google Scholar 

  11. 11.

    Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    CAS  PubMed  Google Scholar 

  12. 12.

    Worbs, T. et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J. Exp. Med. 203, 519–527 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kim, K. S. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science, https://doi.org/10.1126/science.aac5560 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Veenbergen, S. et al. Colonic tolerance develops in the iliac lymph nodes and can be established independent of CD103 dendritic cells. Mucosal Immunol., https://doi.org/10.1038/mi.2015.118 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    CAS  PubMed  Google Scholar 

  17. 17.

    Shen, L., Weber, C. R., Raleigh, D. R., Yu, D. & Turner, J. R. Tight junction pore and leak pathways: a dynamic duo. Annu. Rev. Physiol. 73, 283–309 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Jang, M. H. et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl Acad. Sci. USA 101, 6110–6115 (2004).

    CAS  PubMed  Google Scholar 

  19. 19.

    Terahara, K. et al. Comprehensive gene expression profiling of Peyer's patch M cells, villous M-like cells, and intestinal epithelial cells. J. immunol. (Baltimore, Md.: 1950) 180, 7840–7846 (2008).

    CAS  PubMed  Google Scholar 

  20. 20.

    McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Knoop, K. A., McDonald, K. G., McCrate, S., McDole, J. R. & Newberry, R. D. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 8, 198–210 (2015).

    CAS  PubMed  Google Scholar 

  22. 22.

    Kulkarni, D. H. & Newberry, R. D. Intestinal Macromolecular Transport Supporting Adaptive Immunity. Cell. Mol. Gastroenterol. hepatol. 7, 729–737 (2019). https://doi.org/10.1016/j.jcmgh.

  23. 23.

    Rimoldi, M. et al. Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 106, 2818–2826 (2005).

    CAS  PubMed  Google Scholar 

  24. 24.

    Vallon-Eberhard, A., Landsman, L., Yogev, N., Verrier, B. & Jung, S. Transepithelial pathogen uptake into the small intestinal lamina propria. J. Immunol. (Baltimore, Md.: 1950) 176, 2465–2469 (2006).

  25. 25.

    Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    CAS  PubMed  Google Scholar 

  26. 26.

    Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity 40, 248–261 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Nagatake, T., Fujita, H., Minato, N. & Hamazaki, Y. Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine. PLoS One 9, e90638 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Noah, T. K. et al. IL-13-induced Intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. J. Allergy Clin. Immunol., https://doi.org/10.1016/j.jaci.2019.04.030 (2019).

    PubMed  Google Scholar 

  29. 29.

    Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kim, K. W. et al. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118, e156–e167 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hapfelmeier, S. et al. Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent step in DeltainvG S. Typhimurium colitis. J. Exp. Med. 205, 437–450 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Cruickshank, S. M. et al. Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris infection. J. Immunol. 182, 3055–3062 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Shroyer, N. F. et al. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132, 2478–2488 (2007).

    CAS  PubMed  Google Scholar 

  34. 34.

    Yang, Q. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294, 2155–2158 (2001).

    CAS  PubMed  Google Scholar 

  35. 35.

    Rose, M. F., Ahmad, K. A., Thaller, C. & Zoghbi, H. Y. Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc. Natl Acad. Sci. USA 106, 22462–22467 (2009).

    CAS  PubMed  Google Scholar 

  36. 36.

    Ben-Arie, N. et al. Functional conservation of atonal and Math1 in the CNS and PNS. Development 127, 1039–1048 (2000).

    CAS  PubMed  Google Scholar 

  37. 37.

    Ireland, H., Houghton, C., Howard, L. & Winton, D. J. Cellular inheritance of a Cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Dev. Dyn. 233, 1332–1336 (2005).

    CAS  PubMed  Google Scholar 

  38. 38.

    Troughton, W. D. & Trier, J. S. Paneth and goblet cell renewal in mouse duodenal crypts. J. Cell Biol. 41, 251–268 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORgamma+ regulatory T cells. Science 349, 993–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Ohnmacht, C. et al. The microbiota regulates type 2 immunity through RORgammat+ T cells. Science, https://doi.org/10.1126/science.aac4263 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Knoop, K. A. et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aao1314 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chai, J. N. et al. Helicobacter species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aal5068 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Xu, M. et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554, 373–377 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ladinsky, M. S. et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science https://doi.org/10.1126/science.aat4042 (2019).

    CAS  PubMed  Google Scholar 

  45. 45.

    McDonald, K. G. et al. Epithelial expression of the cytosolic retinoid chaperone cellular retinol binding protein II is essential for in vivo imprinting of local gut dendritic cells by lumenal retinoids. Am. J. Pathol. 180, 984–997 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mora, J. R. & von Andrian, U. H. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin. Immunol. 21, 28–35 (2009).

    CAS  PubMed  Google Scholar 

  49. 49.

    Herzog, R. W. et al. Oral tolerance induction in hemophilia B dogs fed with transplastomic lettuce. Mol. Ther. 25, 512–522 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Chen, X. et al. Oral administration of visceral adipose tissue antigens ameliorates metabolic disorders in mice and elevates visceral adipose tissue-resident CD4+ CD25+ Foxp3+ regulatory T cells. Vaccine, https://doi.org/10.1016/j.vaccine.2017.07.014 (2017).

    CAS  PubMed  Google Scholar 

  51. 51.

    Thota, L. N., Ponnusamy, T., Philip, S., Lu, X. & Mundkur, L. Immune regulation by oral tolerance induces alternate activation of macrophages and reduces markers of plaque destabilization in Apobtm2Sgy/Ldlrtm1Her/J mice. Sci. Rep. 7, 3997 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    CAS  PubMed  Google Scholar 

  53. 53.

    Mucida, D. et al. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Invest 115, 1923–1933 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ostroukhova, M. et al. Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound TGF-beta and FOXP3. J. Clin. Invest 114, 28–38 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    CAS  PubMed  Google Scholar 

  56. 56.

    Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    CAS  PubMed  Google Scholar 

  57. 57.

    Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    CAS  PubMed  Google Scholar 

  58. 58.

    Jaensson, E. et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205, 2139–2149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med. 205, 2483–2490 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Cording, S. et al. The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes. Mucosal Immunol. 7, 359–368 (2014).

    CAS  PubMed  Google Scholar 

  61. 61.

    McDonald, K. G. et al. CCR6 promotes steady state intestinal mononuclear phagocyte association with the intestinal epithelium, imprinting, and immune surveillance. Immunology, https://doi.org/10.1111/imm.12801 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Jaensson-Gyllenback, E. et al. Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol. https://doi.org/10.1038/mi.2010.91 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Shan, M. et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342, 447–453 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  PubMed  Google Scholar 

  65. 65.

    Atarashi, K. et al. T induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, https://doi.org/10.1038/nature12331 (2013).

    CAS  PubMed  Google Scholar 

  66. 66.

    Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    CAS  PubMed  Google Scholar 

  67. 67.

    Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    CAS  PubMed  Google Scholar 

  68. 68.

    Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  PubMed  Google Scholar 

  70. 70.

    Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    FOTI, M. & RICCIARDICASTAGNOLI, P. Antigen sampling by mucosal dendritic cells. Trends Mol. Med. 11, 394–396 (2005).

    CAS  PubMed  Google Scholar 

  72. 72.

    Schulz, O. & Pabst, O. Antigen sampling in the small intestine. Trends Immunol. 34, 155–161 (2013).

    CAS  PubMed  Google Scholar 

  73. 73.

    Knoop, K. A., Miller, M. J. & Newberry, R. D. Transepithelial antigen delivery in the small intestine: different paths, different outcomes. Curr. Opin. Gastroenterol. 29, 112–118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Rescigno, M., Rotta, G., Valzasina, B. & Ricciardi-Castagnoli, P. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204, 572–581 (2001).

    CAS  PubMed  Google Scholar 

  75. 75.

    Morita, N. et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1(+) cells by bacterial metabolites. Nature, https://doi.org/10.1038/s41586-019-0884-1 (2019).

    CAS  PubMed  Google Scholar 

  76. 76.

    Knoop, K. A. et al. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J. Immunol. 183, 5738–5747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Hase, K. et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009).

    CAS  PubMed  Google Scholar 

  78. 78.

    Knoop, K. A., McDonald, K. G., Kulkarni, D. H. & Newberry, R. D. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 65, 1100–U1160 (2016).

    CAS  PubMed  Google Scholar 

  79. 79.

    Knoop, K. A. et al. Antibiotics promote the sampling of luminal antigens and bacteria via colonic goblet cell associated antigen passages. Gut Microbes https://doi.org/10.1080/19490976.2017.1299846 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Kulkarni, D. H. et al. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunol. https://doi.org/10.1038/s41385-018-0007-6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Barnden, M. J., Allison, J., Heath, W. R. & Carbone, F. R. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    CAS  PubMed  Google Scholar 

  83. 83.

    Lindquist, R. L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243–1250 (2004).

    CAS  PubMed  Google Scholar 

  84. 84.

    Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    CAS  PubMed  Google Scholar 

  86. 86.

    el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    CAS  PubMed  Google Scholar 

  87. 87.

    Lee, T. C. & Threadgill, D. W. Generation and validation of mice carrying a conditional allele of the epidermal growth factor receptor. Genesis 47, 85–92 (2009).

    CAS  PubMed  Google Scholar 

  88. 88.

    Jeon, J. et al. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J. Neurosci. 30, 2396–2405 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by grants: DK097317, AI131342, AI112626, DK109006, AI136515, AI 140755, and Crohn’s and Colitis Foundation Research Fellowship Award 348359 and Swedish Research Council International Postdoc Award 2014-00366. The authors wish to thank Mark J Miller for advice and assistance with in vivo two-photon imaging. The Washington University Digestive Diseases Research Center Core, supported by NIH grant P30 DK052574 assisted with imaging. Two photon in vivo imaging was performed at the Washington University School of Medicine In Vivo Imaging Core. The High Speed Cell Sorter Core at the Alvin J. Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital in St. Louis, MO. provided flow-cytometric cell sorting services. The Siteman Cancer Center is supported in part by NCI Cancer Center Support Grant P30 CA91842.

Author information

Affiliations

Authors

Contributions

D.H.K., J.K.G., K.A.K., K.G.M., A.N.F., S.S.B., and J.E.D. performed the experiments. D.H.K., J.K.G., K.G.M., S.P.H., C.S.H., and R.D.N. designed the study. D.H.K., J.K.G., S.P.H., C.S.H., and R.D.N. wrote the manuscript. All authors have reviewed and agree with the manuscript content.

Corresponding author

Correspondence to Rodney D. Newberry.

Ethics declarations

Competing interests

R.D.N., K.A.K., and K.G.M. are inventors on U.S. Nonprovisional Application Serial No. 15/880,658 Compositions And Methods For Modulation Of Dietary And Microbial Exposure.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, D.H., Gustafsson, J.K., Knoop, K.A. et al. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunol 13, 271–282 (2020). https://doi.org/10.1038/s41385-019-0240-7

Download citation

Further reading

Search