Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HuM195 and its single-chain variable fragment increase Aβ phagocytosis in microglia via elimination of CD33 inhibitory signaling

Abstract

CD33 is a transmembrane receptor expressed on cells of myeloid lineage and regulates innate immunity. CD33 is a risk factor for Alzheimer’s disease (AD) and targeting CD33 has been a promising strategy drug development. However, the mechanism of CD33’s action is poorly understood. Here we investigate the mechanism of anti-CD33 antibody HuM195 (Lintuzumab) and its single-chain variable fragment (scFv) and examine their therapeutic potential. Treatment with HuM195 full-length antibody or its scFv increased phagocytosis of β-amyloid 42 (Aβ42) in human microglia and monocytes. This activation of phagocytosis was driven by internalization and degradation of CD33, thereby downregulating its inhibitory signal. HumM195 transiently induced CD33 phosphorylation and its signaling via receptor dimerization. However, this signaling decayed with degradation of CD33. scFv binding to CD33 leads to a degradation of CD33 without detection of the CD33 dimerization and signaling. Moreover, we found that treatments with either HuM195 or scFv promotes the secretion of IL33, a cytokine implicated in microglia reprogramming. Importantly, recombinant IL33 potentiates the uptake of Aβ42 in monocytes. Collectively, our findings provide unanticipated mechanistic insight into the role of CD33 signaling in both monocytes and microglia and define a molecular basis for the development of CD33-based therapy of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Endotoxin free purified Aβ peptides does not stimulate immune reaction and have homogeneous characteristics of Aβ oligomers.
Fig. 2: HuM195 and its single-chain variable fragment (scFv) treatment increase Aβ42 uptake by phagocytic cells through CD33 degradation.
Fig. 3: HuM195 IgG but not HuM195 scFv incubation induces CD33 dimerization and phosphorylation, relaying transient downstream signaling.
Fig. 4: HuM195 treatment induces expression of immune-related genes including IL33 which enhance phagocytic ability.
Fig. 5: The mechanism of HuM195 treatment in AD: induces microglia activation and modifies inflammatory response.

Similar content being viewed by others

Data availability

Source data for Figs. 15 and Extended Figs. 15 and Tables S1 and S2, as well as all other data, are available from the corresponding authors upon reasonable request.

References

  1. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368:107–16.

    Article  CAS  PubMed  Google Scholar 

  3. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–27.

    Article  CAS  PubMed  Google Scholar 

  4. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008;83:623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013;78:631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ulrich JD, Holtzman DM. TREM2 Function in Alzheimer’s Disease and Neurodegeneration. ACS Chem Neurosci. 2016;7:420–7.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. 2015;160:1061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garnache-Ottou F, Chaperot L, Biichle S, Ferrand C, Remy-Martin JP, Deconinck E, et al. Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells. Blood. 2005;105:1256–64.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao L. CD33 in Alzheimer’s disease - biology, pathogenesis, and therapeutics: a mini-review. Gerontology. 2019;65:323–31.

    Article  CAS  PubMed  Google Scholar 

  10. Griciuc A, Patel S, Federico AN, Choi SH, Innes BJ, Oram MK, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s Disease. Neuron. 2019;103:820–35.e827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C, Goate AM. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS ONE. 2012;7:e50976.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duan S, Paulson JC. Siglecs as immune cell checkpoints in disease. Annu Rev Immunol. 2020;38:365–95.

    Article  CAS  PubMed  Google Scholar 

  13. Walter RB. Expanding use of CD33-directed immunotherapy. Expert Opin Biol Ther. 2020;20:955–8.

    Article  PubMed  Google Scholar 

  14. Jen EY, Ko CW, Lee JE, Del Valle PL, Aydanian A, Jewell C, et al. FDA approval: gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia. Clin Cancer Res. 2018;24:3242–6.

    Article  CAS  PubMed  Google Scholar 

  15. Scheinberg DA, Tanimoto M, McKenzie S, Strife A, Old LJ, Clarkson BD. Monoclonal antibody M195: a diagnostic marker for acute myelogenous leukemia. Leukemia. 1989;3:440–5.

    CAS  PubMed  Google Scholar 

  16. Sutherland MK, Yu C, Lewis TS, Miyamoto JB, Morris-Tilden CA, Jonas M, et al. Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. MAbs. 2009;1:481–90.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rosenblat TL, McDevitt MR, Carrasquillo JA, Pandit-Taskar N, Frattini MG, Maslak PG, et al. Treatment of patients with acute myeloid leukemia with the targeted alpha-particle nanogenerator actinium-225-lintuzumab. Clin Cancer Res. 2022;28:2030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Griciuc A, Federico AN, Natasan J, Forte AM, McGinty D, Nguyen H, et al. Gene therapy for Alzheimer’s disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Hum Mol Genet. 2020;29:2920–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wissfeld J, Nozaki I, Mathews M, Raschka T, Ebeling C, Hornung V, et al. Deletion of Alzheimer’s disease-associated CD33 results in an inflammatory human microglia phenotype. Glia. 2021;69:1393–412.

    Article  CAS  PubMed  Google Scholar 

  20. Kasim JK, Kavianinia I, Harris PWR, Brimble MA. Three decades of amyloid beta synthesis: challenges and advances. Front Chem. 2019;7:472.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mamat U, Woodard RW, Wilke K, Souvignier C, Mead D, Steinmetz E, et al. Endotoxin-free protein production—ClearColi™ technology. Nat Methods. 2013;10:916–6.

    Article  Google Scholar 

  22. Xue WF, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE. Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem. 2009;284:34272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cizas P, Budvytyte R, Morkuniene R, Moldovan R, Broccio M, Losche M, et al. Size-dependent neurotoxicity of beta-amyloid oligomers. Arch Biochem Biophys. 2010;496:84–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Younkin SG. The role of A beta 42 in Alzheimer’s disease. J Physiol Paris. 1998;92:289–92.

    Article  CAS  PubMed  Google Scholar 

  25. Kotler SA, Walsh P, Brender JR, Ramamoorthy A. Differences between amyloid-beta aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer’s disease. Chem Soc Rev. 2014;43:6692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dolman NJ, Kilgore JA, Davidson MW. A review of reagents for fluorescence microscopy of cellular compartments and structures, part I: BacMam labeling and reagents for vesicular structures. Curr Protoc Cytom. 2013;12:30.

    Google Scholar 

  27. Ritchie M, Tchistiakova L, Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs. 2013;5:13–21.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hagemann UB, Wickstroem K, Wang E, Shea AO, Sponheim K, Karlsson J, et al. In vitro and in vivo efficacy of a novel CD33-Targeted Thorium-227 conjugate for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2016;15:2422–31.

    Article  CAS  PubMed  Google Scholar 

  29. Paul SP, Taylor LS, Stansbury EK, McVicar DW. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood. 2000;96:483–90.

    Article  CAS  PubMed  Google Scholar 

  30. Lajaunias F, Dayer JM, Chizzolini C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur J Immunol. 2005;35:243–51.

    Article  CAS  PubMed  Google Scholar 

  31. Estus S, Shaw BC, Devanney N, Katsumata Y, Press EE, Fardo DW. Evaluation of CD33 as a genetic risk factor for Alzheimer’s disease. Acta Neuropathol. 2019;138:187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weiss A, Schlessinger J. Switching signals on or off by receptor dimerization. Cell. 1998;94:277–80.

    Article  CAS  PubMed  Google Scholar 

  33. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol. 2002;20:473–77.

    Article  CAS  PubMed  Google Scholar 

  34. Lau SF, Chen C, Fu WY, Qu JY, Cheung TH, Fu AKY, et al. IL-33-PU.1 transcriptome reprogramming drives functional state transition and clearance activity of microglia in Alzheimer’s disease. Cell Rep. 2020;31:107530.

    Article  CAS  PubMed  Google Scholar 

  35. Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW, Nelson PT, et al. CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J Neurosci. 2013;33:13320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malik M, Chiles J 3rd, Xi HS, Medway C, Simpson J, Potluri S, et al. Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia. Hum Mol Genet. 2015;24:3557–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raj T, Ryan KJ, Replogle JM, Chibnik LB, Rosenkrantz L, Tang A, et al. CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum Mol Genet. 2014;23:2729–36.

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacherjee A, Jung J, Zia S, Ho M, Eskandari-Sedighi G, St Laurent CD, et al. The CD33 short isoform is a gain-of-function variant that enhances Abeta1-42 phagocytosis in microglia. Mol Neurodegener. 2021;16:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013;16:848–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhattacherjee A, Rodrigues E, Jung J, Luzentales-Simpson M, Enterina JR, Galleguillos D, et al. Repression of phagocytosis by human CD33 is not conserved with mouse CD33. Commun Biol. 2019;2:450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Caron PC, Jurcic JG, Scott AM, Finn RD, Divgi CR, Graham MC, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood. 1994;83:1760–8.

    Article  CAS  PubMed  Google Scholar 

  42. Co MS, Avdalovic NM, Caron PC, Avdalovic MV, Scheinberg DA, Queen C. Chimeric and humanized antibodies with specificity for the CD33 antigen. J Immunol. 1992;148:1149–54.

    Article  CAS  PubMed  Google Scholar 

  43. Caron PC, Co MS, Bull MK, Avdalovic NM, Queen C, Scheinberg DA. Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res. 1992;52:6761–7.

    CAS  PubMed  Google Scholar 

  44. Laing AA, Harrison CJ, Gibson BES, Keeshan K. Unlocking the potential of anti-CD33 therapy in adult and childhood acute myeloid leukemia. Exp Hematol. 2017;54:40–50.

    Article  CAS  PubMed  Google Scholar 

  45. Tanimoto M, Scheinberg DA, Cordon-Cardo C, Huie D, Clarkson BD, Old LJ. Restricted expression of an early myeloid and monocytic cell surface antigen defined by monoclonal antibody M195. Leukemia. 1989;3:339–48.

    CAS  PubMed  Google Scholar 

  46. Scheinberg DA, Lovett D, Divgi CR, Graham MC, Berman E, Pentlow K, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol. 1991;9:478–90.

    Article  CAS  PubMed  Google Scholar 

  47. Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119:6198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laszlo GS, Estey EH, Walter RB. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 2014;28:143–53.

    Article  CAS  PubMed  Google Scholar 

  49. Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14:653–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lowell CA. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol. 2011;3:a002352.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Linnartz B, Wang Y, Neumann H. Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. Int J Alzheimers Dis. 2010;2010:587463.

    PubMed  PubMed Central  Google Scholar 

  52. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fu AK, Hung KW, Yuen MY, Zhou X, Mak DS, Chan IC, et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci USA. 2016;113:E2705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol. 2006;34:1010–20.

    Article  CAS  PubMed  Google Scholar 

  55. Al-Alwan LA, Chang Y, Mogas A, Halayko AJ, Baglole CJ, Martin JG, et al. Differential roles of CXCL2 and CXCL3 and their receptors in regulating normal and asthmatic airway smooth muscle cell migration. J Immunol. 2013;191:2731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by NIH grant RF1AG057593 (YML), R01AG061350 (YML), R01AG080684 (YML). the JPB Foundation (YML), the MetLife Foundation (YML), Cure Alzheimer’s Fund (YML), The Edward and Della L. Thome Memorial Foundation (YML), Coins for the Alzheimer’s Research Trust (YML) and BrightFocus Foundation (EW), R35 CA241894 (DAS), R01 CA055349 (DAS), P01 CA023766 (DAS), Tudor Funds (DAS). Authors also acknowledge the MSK Cancer Center Support Grant/Core Grant (Grant P30 CA008748), Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Experimental Therapeutics Center of MSKCC, and the William Randolph Hearst Fund in Experimental Therapeutics.

Author information

Authors and Affiliations

Authors

Contributions

EW, DAS and YML conceived the study. EW, MM, DAS and YML planned and EW, MM performed most of the experiments and analyzed the data. TJ prepared ES microglia, GPL and ZK expressed and purified Huam195 scFv. JCC performed AFM studies. LS supervised the production of ES microglia and analyzed data. EW wrote the initial draft of the manuscript and EW, MM, DAS and YML revised the manuscript. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to David A. Scheinberg or Yue-Ming Li.

Ethics declarations

Competing interests

A patent has been filed by Memorial Sloan Kettering Cancer Center to protect this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, E., Malviya, M., Jain, T. et al. HuM195 and its single-chain variable fragment increase Aβ phagocytosis in microglia via elimination of CD33 inhibitory signaling. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02474-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02474-z

Search

Quick links