Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

The GABAergic system in Alzheimer’s disease: a systematic review with meta-analysis

Abstract

The γ-aminobutyric acid (GABA)ergic system is the primary inhibitory neurotransmission system in the mammalian brain. Its dysregulation has been shown in multiple brain conditions, but in Alzheimer’s disease (AD) studies have provided contradictory results. Here, we conducted a systematic review with meta-analysis to investigate whether the GABAergic system is altered in AD patients compared to healthy controls (HC), following the PRISMA 2020 Statement. We searched PubMed and Web of Science from database inception to March 18th, 2023 for studies reporting GABA, glutamate decarboxylase (GAD) 65/67, GABAA, GABAB, and GABAC receptors, GABA transporters (GAT) 1–3 and vesicular GAT in the brain, and GABA levels in the cerebrospinal fluid (CSF) and blood. Heterogeneity was estimated using the I2 index, and the risk of bias was assessed with an adapted questionnaire from the Joanna Briggs Institute Critical Appraisal Tools. The search identified 3631 articles, and 48 met the final inclusion criteria (518 HC, mean age 72.2, and 603 AD patients, mean age 75.6). Random-effects meta-analysis [standardized mean difference (SMD)] revealed that AD patients presented lower GABA levels in the brain (SMD = −0.48 [95% CI = −0.7, −0.27], adjusted p value (adj. p) < 0.001) and in the CSF (−0.41 [−0.72, −0.09], adj. p = 0.042), but not in the blood (−0.63 [−1.35, 0.1], adj. p = 0.176). In addition, GAD65/67 (−0.67 [−1.15, −0.2], adj. p = 0.006), GABAA receptor (−0.51 [−0.7, −0.33], adj. p < 0.001), and GABA transporters (−0.51 [−0.92, −0.09], adj. p = 0.016) were lower in the AD brain. Here, we showed a global reduction of GABAergic system components in the brain and lower GABA levels in the CSF of AD patients. Our findings suggest the GABAergic system is vulnerable to AD pathology and should be considered a potential target for developing pharmacological strategies and novel AD biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow diagram of study selection.
Fig. 2: GABA and GAD65/67 meta-analyses in the brain of AD patients compared to HC.
Fig. 3: GABAA receptor and GABA transporters meta-analyses in the brain of AD patients compared to HC.
Fig. 4: GABA levels in the CSF and blood of AD patients compared to HC.
Fig. 5: GABAergic system in AD brain.
Fig. 6: Proposed GABAergic synapse in AD brain.

Similar content being viewed by others

Data availability

All data are available on GitHub (bit.ly/3o5nqcn). Supplementary information is available at Molecular Psychiatry’s website.

Code availability

R codes generated in this work are available on GitHub (bit.ly/3o5nqcn).

References

  1. Alzheimer’s Association. 2023 Alzheimer’s disease Facts and Figures. Alzheimer’s Dement. 2023;19:1598–695.

  2. Stelzmann RA, Norman SH, Reed MF. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat. 1995;8:429–31.

    PubMed  Google Scholar 

  3. Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther. 2019;4:37.

    PubMed  PubMed Central  Google Scholar 

  4. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–17.

    CAS  PubMed  Google Scholar 

  5. Greenamyre JT, Maragos WF, Albin RL, Penney JB, Young AB. Glutamate transmission and toxicity in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 1988;12:421–IN4.

    CAS  PubMed  Google Scholar 

  6. Bear MF, Connors BW, Paradiso, MA. Neuroscience: Exploring the Brain. 4th ed. Wolters Kluwer Health; 2015.

  7. Davies P. Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res. 1979;171:319–27.

    CAS  PubMed  Google Scholar 

  8. Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2:1403.

    CAS  PubMed  Google Scholar 

  9. Rossor MN, Garrett NJ, Johnson AL, Mountjoy CQ, Roth M, Iversen LL. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain. 1982;105:313–30.

    CAS  PubMed  Google Scholar 

  10. Tarbit I, Perry EK, Perry RH, Blessed G, Tomlinson BE. Hippocampal free amino acids in Alzheimer’s disease. J Neurochem. 1980;35:1246–9.

    CAS  PubMed  Google Scholar 

  11. Perry EK, Atack JR, Perry RH, Hardy JA, Dodd PR, Edwardson JA, et al. Intralaminar neurochemical distributions in human midtemporal cortex: comparison between Alzheimer’s disease and the normal. J Neurochem. 1984;42:1402–10.

    CAS  PubMed  Google Scholar 

  12. Perry EK, Blessed G, Tomlinson BE, Perry RH, Crow TJ, Cross AJ, et al. Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol Aging. 1981;2:251–6.

    CAS  PubMed  Google Scholar 

  13. Cross AJ, Crow TJ, Johnson JA, Perry EK, Perry RH, Blessed G, et al. Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer-type. J Neurol Sci. 1984;64:109–17.

    CAS  PubMed  Google Scholar 

  14. Hardy J, Cowburn R, Barton A, Reynolds G, Dodd P, Wester P, et al. A disorder of cortical GABAergic innervation in Alzheimer’s disease. Neurosci Lett. 1987;73:192–6.

    CAS  PubMed  Google Scholar 

  15. Govindpani K, Guzmán BCF, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Towards a Better Understanding of GABAergic Remodeling in Alzheimer’s Disease. Int J Mol Sci. 2017;18:1813.

  16. Marczynski TJ. GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease: pharmacologic profile of the benzodiazepine antagonist, flumazenil. Rev Neurosci. 1995;6:221–58.

    CAS  PubMed  Google Scholar 

  17. Bi D, Wen L, Wu Z, Shen Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer’s disease. Alzheimer’s Dement. 2020;16:1312–29.

    Google Scholar 

  18. Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. Semin Cell Dev Biol. 2021;116:146–59.

    PubMed  PubMed Central  Google Scholar 

  19. PROSPERO - International Prospective Register of Systematic Reviews. https://www.crd.york.ac.uk/prospero/

  20. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:160.

  21. Ambrad GE, Fuhrmann M. Unsupervised excitation: GABAergic dysfunctions in Alzheimer’s disease. Brain Res. 2019;1707:216–26.

    Google Scholar 

  22. Calvo-Flores GB, Vinnakota C, Govindpani K, Waldvogel HJ, Faull RLM, Kwakowsky A. The GABAergic system as a therapeutic target for Alzheimer’s disease. J Neurochem. 2018;146:649–69.

    Google Scholar 

  23. Bellaver B, Ferrari-Souza JP, da Ros LU, Carter SF, Rodriguez-Vieitez E, Nordberg A, et al. Astrocyte Biomarkers in Alzheimer Disease: A Systematic Review and Meta-analysis. Neurology. 2021;96:E2944–55.

    CAS  PubMed  Google Scholar 

  24. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15:673–84.

    CAS  PubMed  Google Scholar 

  25. Yoon S, Kim SE, Ko Y, Jeong GH, Lee KH, Lee J, et al. Differential expression of MicroRNAs in Alzheimer’s disease: a systematic review and meta-analysis. Mol Psychiatry. 2022;27:2405–13.

    CAS  PubMed  Google Scholar 

  26. Gao S, Burney HN, Callahan CM, Purnell CE, Hendrie HC. Incidence of Dementia and Alzheimer Disease Over Time: A Meta-Analysis. J Am Geriatr Soc. 2019;67:1361–9.

  27. Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH. Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst Rev. 2017;6:245.

  28. Hirt J, Bergmann J, Karrer M. Overlaps of multiple database retrieval and citation tracking in dementia care research: a methodological study. J Med Libr Assoc. 2021;109:275–85.

    PubMed  PubMed Central  Google Scholar 

  29. Gusenbauer M. Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases. Scientometrics. 2022;127:2683–745.

    PubMed  PubMed Central  Google Scholar 

  30. Eybye MN, Madsen SD, Schultz ANØ, Nim CG. Database coverage and their use in systematic reviews regarding spinal manipulative therapy: an exploratory study. Chiropr Man Therap. 2022;30:57.

  31. Rayyan – Intelligent Systematic Reviews. https://www.rayyan.ai/

  32. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–44.

    CAS  PubMed  Google Scholar 

  33. Jack CR, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:257–62.

    Google Scholar 

  34. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.

    PubMed  Google Scholar 

  35. WebPlotDigitizer - Extract data from plots, images, and maps. https://automeris.io/WebPlotDigitizer/

  36. Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. J Stat Softw. 2010;36:1–48.

    Google Scholar 

  37. Forest Plots, Funnel Plots, and Visual Funnel Plot Inference for Meta-Analysis [R package metaviz version 0.3.1]. 2020 Apr 9; https://CRAN.R-project.org/package=metaviz

  38. R: The R Project for Statistical Computing. https://www.r-project.org/

  39. Gryglewski G, Lanzenberger R, Silberbauer LR, Pacher D, Kasper S, Rupprecht R, et al. Meta-analysis of brain structural changes after electroconvulsive therapy in depression. Brain Stimul. 2021;14:927–37.

    PubMed  Google Scholar 

  40. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Psychology Press; 1988.

  41. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7:55–79.

    PubMed  Google Scholar 

  42. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J Royal Statis Soc: Series B (Methodological). 1995;57:289–300.

    Google Scholar 

  43. Critical Appraisal Tools | JBI. https://jbi.global/critical-appraisal-tools

  44. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller RG. The Jackknife – A Review. Biometrika. 1974;61:15.

    Google Scholar 

  46. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    PubMed  Google Scholar 

  47. Chu DCM, Penney JB, Young AB. Cortical GABAB and GABAA receptors in Alzheimer’s disease: a quantitative autoradiographic study. Neurology. 1987;37:1454–9.

    CAS  PubMed  Google Scholar 

  48. Cruz-Aguilar MA, Ramírez-Salado I, Hernández-González M, Guevara MA, Rivera-García AP. EEG coherence and power spectra during REM sleep related to melatonin intake in mild-to-moderate Alzheimer’s disease: a pilot study. Int J Neurosci. 2021;133:441–9.

  49. Kuroda H. Gamma-aminobutyric acid (GABA) in cerebrospinal fluid. Acta Med Okayama. 1983;37:167–77.

    CAS  PubMed  Google Scholar 

  50. Sedvall G. Neurotransmitter receptor imaging in Alzheimer’s disease. J Neural Transm. 1987;24:43–8.

    CAS  Google Scholar 

  51. Zilles K, Qu M, Schleicher A, Schroeter M, Kraemer M, Witte OW. Plasticity and neurotransmitter receptor changes in Alzheimer’s disease and experimental cortical infarcts. Arzneimittelforschung. 1995;45:361–6.

  52. Corrigan F, Reynolds G, Ward N. Reductions of zinc and selenium in brain in Alzheimer’s disease. Trace Elem Med. 1991;8:1–5.

  53. Pascual B, Prieto E, Marti-Climent J, Lostao J, Quincoces G, Penuelas I, et al. Decreased Medial Temporal GABAA Binding on C-11-Flumazenil PET in Early Alzheimer Disease. Neurology. 2011;76:177.

  54. Iwakiri M, Mizukami K, Ikonomovic MD, Ishikawa M, Hidaka S, Abrahamson EE, et al. Changes in hippocampal GABABR1 subunit expression in Alzheimer’s patients: association with Braak staging. Acta Neuropathol. 2005;109:467–74.

    CAS  PubMed  Google Scholar 

  55. Nägga K, Bogdanovic N, Marcusson J. GABA transporters (GAT-1) in Alzheimer’s disease. J Neural Transm (Vienna). 1999;106:1141–9.

    PubMed  Google Scholar 

  56. Sasaki H, Muramoto O, Kanazawa I, Arai H, Kosaka K, Iizuka R. Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type. Ann Neurol. 1986;19:263–9.

    CAS  PubMed  Google Scholar 

  57. Schwab C, Yu S, Wong W, McGeer EG, McGeer PL. GAD65, GAD67, and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J Alzheimers Dis. 2013;33:1073–88.

    CAS  PubMed  Google Scholar 

  58. Tohgi H, Abe T, Takahashi S, Kimura M. A selective reduction of excitatory amino acids in cerebrospinal fluid of patients with Alzheimer type dementia compared with vascular dementia of the Binswanger type. Neurosci Lett. 1992;141:5–8.

    CAS  PubMed  Google Scholar 

  59. Griffiths PD, Perry RH, Crossman AR. A detailed anatomical analysis of neurotransmitter receptors in the putamen and caudate in Parkinson’s disease and Alzheimer’s disease. Neurosci Lett. 1994;169:68–72.

    CAS  PubMed  Google Scholar 

  60. Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, et al. Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging. 2014;35:1992–2003.

    CAS  PubMed  Google Scholar 

  61. Aisa B, Gil-Bea FJ, Solas M, García-Alloza M, Chen CP, Lai MK, et al. Altered NCAM expression associated with the cholinergic system in Alzheimer’s disease. J Alzheimers Dis. 2010;20:659–68.

    CAS  PubMed  Google Scholar 

  62. Gueli MC, Taibi G. Alzheimer’s disease: amino acid levels and brain metabolic status. Neurol Sci. 2013;34:1575–9.

    PubMed  Google Scholar 

  63. Jansen KLR, Faull RLM, Dragunow M, Synek BL. Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors-an autoradiographic study. Neuroscience. 1990;39:613–27.

    CAS  PubMed  Google Scholar 

  64. Smith CCT, Bowen DM, Sims NR, Neary D, Davison AN. Amino acid release from biopsy samples of temporal neocortex from patients with Alzheimer’s disease. Brain Res. 1983;264:138–41.

    CAS  PubMed  Google Scholar 

  65. Mohanakrishnan P, Fowler AH, Vonsattel JP, Husain MM, Jolles PR, Liem P, et al. An in vitro 1H nuclear magnetic resonance study of the temporoparietal cortex of Alzheimer brains. Exp Brain Res. 1995;102:503–10.

    CAS  PubMed  Google Scholar 

  66. Weiner MF, Speciale SG, Risser RC, Kramer GL, Petty F. Cerebrospinal fluid and plasma gamma-aminobutyric acid in Alzheimer’s disease. Biol Psychiatry. 1996;40:933–4.

    CAS  PubMed  Google Scholar 

  67. Shimohama S, Taniguchi T, Fujiwara M, Kameyama M. Changes in benzodiazepine receptors in Alzheimer-type dementia. Ann Neurol. 1988;23:404–6.

    CAS  PubMed  Google Scholar 

  68. Pomara N, Deptula D, Galloway MP, LeWitt PA, Stanley M. CSF GABA in caregiver spouses of Alzheimer patients. Am J Psychiatry. 1989;146:787–8.

    CAS  PubMed  Google Scholar 

  69. Howell O, Atack JR, Dewar D, McKernan RM, Sur C. Density and pharmacology of α5 subunit-containing GABA(A) receptors are preserved in hippocampus of Alzheimer’s disease patients. Neuroscience. 2000;98:669–75.

    CAS  PubMed  Google Scholar 

  70. Seidl R, Cairns N, Singewald N, Kaehler ST, Lubec G. Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology. Naunyn Schmiedebergs Arch Pharmacol. 2001;363:139–45.

    CAS  PubMed  Google Scholar 

  71. Kwakowsky A, Calvo-Flores Guzmán B, Pandya M, Turner C, Waldvogel HJ, Faull RL. GABAA receptor subunit expression changes in the human Alzheimer’s disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus. J Neurochem. 2018;145:374–92.

    CAS  PubMed  Google Scholar 

  72. Burbaeva GS, Boksha IS, Tereshkina EB, Savushkina OK, Prokhorova TA, Vorobyeva EA. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer’s disease: phosphate-activated glutaminase and glutamic acid decarboxylase. Cerebellum. 2014;13:607–15.

    CAS  PubMed  Google Scholar 

  73. Huang D, Liu D, Yin J, Qian T, Shrestha S, Ni H. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment. Eur Radiol. 2017;27:2698–705.

    PubMed  Google Scholar 

  74. Garcia-Alloza M, Tsang SW, Gil-Bea FJ, Francis PT, Lai MK, Marcos B, et al. Involvement of the GABAergic system in depressive symptoms of Alzheimer’s disease. Neurobiol Aging. 2006;27:1110–7.

    CAS  PubMed  Google Scholar 

  75. Oishi M, Mochizuki Y, Yoshihashi H, Takasu T, Nakano E. Laboratory examinations correlated with severity of dementia. Ann Clin Lab Sci. 1996;26:340–5.

    CAS  PubMed  Google Scholar 

  76. Simpson MDC, Cross AJ, Slater P, Deakin JFW. Loss of cortical GABA uptake sites in Alzheimer’s disease. J Neural Transm. 1988;71:219–26.

    CAS  PubMed  Google Scholar 

  77. Zhang Y, Liu Z, Ji B, Liu L, Wu S, Liu X, et al. Metabolite Profile of Alzheimer’s Disease in the Frontal Cortex as Analyzed by HRMAS 1H NMR. Front Aging Neurosci. 2019;10:424.

  78. Poirel O, Mella S, Videau C, Ramet L, Davoli MA, Herzog E, et al. Moderate decline in select synaptic markers in the prefrontal cortex (BA9) of patients with Alzheimer’s disease at various cognitive stages. Sci Rep. 2018;8:938.

  79. Yew DT, Li WP, Webb SE, Lai HWL, Zhang L. Neurotransmitters, peptides, and neural cell adhesion molecules in the cortices of normal elderly humans and Alzheimer patients: a comparison. Exp Gerontol. 1999;34:117–33.

    CAS  PubMed  Google Scholar 

  80. Jiménez-Jiménez FJ, Molina JA, Gómez P, Vargas C, De Bustos F, Benito-León J, et al. Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer’s disease. J Neural Transm (Vienna). 1998;105:269–77.

    PubMed  Google Scholar 

  81. Carlson MD, Penney JB, Young AB. NMDA, AMPA, and benzodiazepine binding site changes in Alzheimer’s disease visual cortex. Neurobiol Aging. 1993;14:343–52.

    CAS  PubMed  Google Scholar 

  82. Meyer M, Koeppe RA, Frey KA, Kuhl DE, Foster NL. Positron emission tomography measures of benzodiazepine binding in Alzheimer’s disease. Arch Neurol. 1995;52:314–7.

    CAS  PubMed  Google Scholar 

  83. Ohyama M, Senda M, Ishiwata K, Kitamura S, Mishina M, Ishii K, et al. Preserved benzodiazepine receptors in Alzheimer’s disease measured with C-11 flumazenil PET and I-123 iomazenil SPECT in comparison with CBF. Ann Nucl Med. 1999;13:309–15.

    CAS  PubMed  Google Scholar 

  84. Soricelli A, Postiglione A, Grivet-Fojaja MR, Mainenti PP, Discepolo A, Varrone A, et al. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer’s disease as a measure of loss of synapses. Eur J Nucl Med. 1996;23:1323–8.

    CAS  PubMed  Google Scholar 

  85. Mohanakrishnan P, Fowler AH, Vonsattel JP, Jolles PR, Husain MM, Liem P, et al. Regional metabolic alterations in Alzheimer’s disease: an in vitro 1H NMR study of the hippocampus and cerebellum. J Gerontol A Biol Sci Med Sci. 1997;52:111–7.

  86. Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Markakis D. Striatal dopamine receptors in Alzheimer-type dementia. Neurosci Lett. 1984;52:1–6.

    CAS  PubMed  Google Scholar 

  87. Boissière F, Faucheux B, Duyckaerts C, Hauw JJ, Agid Y, Hirsch EC. Striatal expression of glutamic acid decarboxylase gene in Alzheimer’s disease. J Neurochem. 1998;71:767–74.

    PubMed  Google Scholar 

  88. Rissman RA, Bennett DA, Armstrong DM. Subregional analysis of GABAA receptor subunit mRNAs in the hippocampus of older persons with and without cognitive impairment. J Chem Neuroanat. 2004;28:17–25.

    CAS  PubMed  Google Scholar 

  89. Cross AJ, Crow TJ, Ferrier IN, Johnson JA. The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiol Aging. 1986;7:3–7.

    CAS  PubMed  Google Scholar 

  90. Bai X, Edden RAE, Gao F, Wang G, Wu L, Zhao B, et al. Decreased γ-aminobutyric acid levels in the parietal region of patients with Alzheimer’s disease. J Magn Reson Imaging. 2015;41:1326–31.

    PubMed  Google Scholar 

  91. Li X, Wang Z, Tan L, Wang Y, Lu C, Chen R, et al. Correcting miR92a-vGAT-Mediated GABAergic Dysfunctions Rescues Human Tau-Induced Anxiety in Mice. Mol Ther. 2017;25:140–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Govindpani K, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. Impaired Expression of GABA Signaling Components in the Alzheimer’s Disease Middle Temporal Gyrus. Int J Mol Sci. 2020;21:1–19.

    Google Scholar 

  93. Lauterborn JC, Scaduto P, Cox CD, Schulmann A, Lynch G, Gall CM, et al. Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer’s disease. Nat Commun. 2021;12:2603.

  94. Gleichmann M, Zhang Y, Wood WH, Becker KG, Mughal MR, Pazin MJ, et al. Molecular changes in brain aging and Alzheimer’s disease are mirrored in experimentally silenced cortical neuron networks. Neurobiol Aging. 2012;33:205.e1–205.e18.

    CAS  PubMed  Google Scholar 

  95. Owen F, Poulter M, Waddington JL, Mashal RD, Crow TJ. [3H] R05-4864 and [3H] flunitrazepam binding in kainate-lesioned rat striatum and in temporal cortex of brains from patients with senile dementia of the Alzheimer type. Brain Res. 1983;278:373–5.

    CAS  PubMed  Google Scholar 

  96. Zhang H, Zhang L, Zhou D, He X, Wang D, Pan H, et al. Ablating ErbB4 in PV neurons attenuates synaptic and cognitive deficits in an animal model of Alzheimer’s disease. Neurobiol Dis. 2017;106:171–80.

    CAS  PubMed  Google Scholar 

  97. Zhang H, Zhang L, Zhou D, Li H, Xu Y. ErbB4 mediates amyloid β-induced neurotoxicity through JNK/tau pathway activation: Implications for Alzheimer’s disease. J Comp Neurol. 2021;529:3497–512.

    CAS  PubMed  Google Scholar 

  98. Martinez-Losa M, Tracy TE, Ma K, Verret L, Clemente-Perez A, Khan AS, et al. Nav1.1-Overexpressing Interneuron Transplants Restore Brain Rhythms and Cognition in a Mouse Model of Alzheimer’s Disease. Neuron. 2018;98:75–89.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zheng J, Li HL, Tian N, Liu F, Wang L, Yin Y, et al. Interneuron Accumulation of Phosphorylated tau Impairs Adult Hippocampal Neurogenesis by Suppressing GABAergic Transmission. Cell Stem Cell. 2020;26:331–345.e6.

    CAS  PubMed  Google Scholar 

  100. Levenga J, Krishnamurthy P, Rajamohamedsait H, Wong H, Franke TF, Cain P, et al. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol Commun. 2013;1:34.

  101. Murari G, Liang DRS, Ali A, Chan F, Mulder-Heijstra M, Verhoeff NPLG, et al. Prefrontal GABA Levels Correlate with Memory in Older Adults at High Risk for Alzheimer’s Disease. Cereb Cortex Commun. 2020;1:1–8.

  102. Wang Y, Wu Z, Bai YT, Wu GY, Chen G. Gad67 haploinsufficiency reduces amyloid pathology and rescues olfactory memory deficits in a mouse model of Alzheimer’s disease. Mol Neurodegener. 2017;12:73.

  103. Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.

    PubMed  Google Scholar 

  104. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    CAS  PubMed  Google Scholar 

  105. Brewer AA, Barton B. Visual cortex in aging and Alzheimer’s disease: changes in visual field maps and population receptive fields. Front Psychol. 2014;5:74.

  106. Madsen SK, Ho AJ, Hua X, Saharan PS, Toga AW, Jack CR, et al. 3D maps localize caudate nucleus atrophy in 400 Alzheimer’s disease, mild cognitive impairment, and healthy elderly subjects. Neurobiol Aging. 2010;31:1312–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gellersen HM, Guell X, Sami S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer’s disease. Neuroimage Clin. 2021;30:102605.

  108. Gellersen HM, Guo CC, O’callaghan C, Tan RH, Sami S, Hornberger M. Cerebellar atrophy in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88:780–8.

    PubMed  Google Scholar 

  109. Fukutani Y, Cairns NJ, Rossor MN, Lantos PL. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci Lett. 1996;214:33–6.

    CAS  PubMed  Google Scholar 

  110. Mavroudis I, Petridis F, Kazis D, Njau SN, Costa V, Baloyannis SJ. Purkinje Cells Pathology in Alzheimer’s Disease. Am J Alzheimer’s Dis Other Demen. 2019;34:439–49.

    Google Scholar 

  111. Fukutani Y, Cairns NJ, Rossor MN, Lantos PL. Cerebellar pathology in sporadic and familial Alzheimer’s disease including APP 717 (Val->Ile) mutation cases: a morphometric investigation. J Neurol Sci. 1997;149:177–84.

    CAS  PubMed  Google Scholar 

  112. Manyevitch R, Protas M, Scarpiello S, Deliso M, Bass B, Nanajian A, et al. Evaluation of Metabolic and Synaptic Dysfunction Hypotheses of Alzheimer’s Disease (AD): A Meta-Analysis of CSF Markers. Curr Alzheimer Res. 2018;15:164–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 2022;21:66–77.

    CAS  PubMed  Google Scholar 

  114. Hansson O, Edelmayer RM, Boxer AL, Carrillo MC, Mielke MM, Rabinovici GD, et al. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimer’s Dement. 2022;18:2669–86.

  115. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284:643–63.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Gregor Gryglewski, who kindly provided the original meta-analysis R code, Dr Gabriel Pires, who helped with methodological questions during the planning and conduction of this work, Dr Victorio Bambini-Junior, who read the first drafts of the paper and provided thoughtful insights, and all the corresponding authors who clarified information on request. We thank BioRender.com for images used in Figs. 5 and 6. Any entity or organization has not directly funded this systematic review with meta-analysis.

Funding

GC-C has received funding from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [88887.687008/2022-00]. BB receives financial support from CAPES [88887.336490/2019-00] and the Alzheimer’s Association (AA) [AARFD-22-974627]. PCLF has received funding from AA [AARFD-22-923814]. JPF-S receives financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [200691/2021-0]. JT is funded by the Canadian Institutes of Health Research (CIHR) doctoral award. CT is funded by the Fonds de Recherche du Québec – Santé (FRQS) doctoral award. MAB has received funding from CNPq PDJ [25/2021]. CS has received funding from CAPES [88887.696202/2022-00] and CNPq [141357/2020-7]. TAP is supported by AA [AACSF-20-648075] and the National Institute of Aging [R01AG075336; R01AG073267]. PR-N receives funding from CIHR [MOP-11-51-31 and RFN 152985; 159815; 162303], the Canadian Consortium of Neurodegeneration and Aging (CCNA) [MOP-11-51-31], the Weston Brain Institute, AA [NIRG-12-92090; NIRP-12-259245], the Brain Canada Foundation [34874 and 33397], FRQS [2020-VICO-279314], and Colin J. Adair Charitable Foundation. DOS is supported by CNPQ/INCT [465671/2014-4], CNPQ/FAPERGS/PRONEX [16/2551- 0000475-7], and FAPERGS [19/2551-0000700-0]. ERZ receives financial support from CNPq [312410/2018-2; 435642/2018-9; 312306/2021-0; 409066/2022-2], ARD/FAPERGS [21/2551-0000673-0], AA [AARGD-21-850670], CNPQ/FAPERGS/PRONEX [16/2551-0000475-7], the Brazilian National Institute of Science and Technology in Excitotoxicity and Neuroprotection [465671/2014-4], Instituto Serrapilheira [Serra-1912-31365], and AA and National Academy of Neuropsychology [ALZ-NAN-22-928381]. The funders had no role in the elaboration of the protocol, data collection and analysis, and manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: GC-C, BB, CS, and ERZ. Paper screening and data extraction: GC-C, PCLF, JPF-S, and VGR. Data preparation: GC-C and BB. Meta-analysis: GC-C, BB, and MAB. Data interpretation: GC-C, BB, and ERZ. Manuscript preparation and figure elaboration: GC-C. Intellectual content: GC-C, BB, PCLF, JPF-S, VGR, JT, CT, MAB, CS, TAP, PR-N, DOS, ERZ. All authors revised and approved the final version of the paper.

Corresponding author

Correspondence to Eduardo R. Zimmer.

Ethics declarations

Competing interests

ERZ serves on the scientific advisory board of Next Innovative Therapeutics (Nintx). The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carello-Collar, G., Bellaver, B., Ferreira, P.C.L. et al. The GABAergic system in Alzheimer’s disease: a systematic review with meta-analysis. Mol Psychiatry 28, 5025–5036 (2023). https://doi.org/10.1038/s41380-023-02140-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02140-w

This article is cited by

Search

Quick links