Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

The glutamatergic system in Alzheimer’s disease: a systematic review with meta-analysis

Abstract

Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer’s disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain. We searched PubMed and Web of Science (database origin-October 2023) reports evaluating glutamate, glutamine, glutaminase, glutamine synthetase, glutamate reuptake, aspartate, excitatory amino acid transporters, vesicular glutamate transporters, glycine, D-serine, metabotropic and ionotropic glutamate receptors in the AD human brain (PROSPERO #CDRD42022299518). The studies were synthesized by outcome and brain region. We included cortical regions, the whole brain (cortical and subcortical regions combined), the entorhinal cortex and the hippocampus. Pooled effect sizes were determined with standardized mean differences (SMD), random effects adjusted by false discovery rate, and heterogeneity was examined by I2 statistics. The search retrieved 6 936 articles, 63 meeting the inclusion criteria (N = 709CN/786AD; mean age 75/79). We showed that the brain of AD individuals presents decreased glutamate (SMD = −0.82; I2 = 74.54%; P < 0.001) and aspartate levels (SMD = −0.64; I2 = 89.71%; P = 0.006), and reuptake (SMD = −0.75; I2 = 83.04%; P < 0.001. We also found reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-GluA2/3 levels (SMD = −0.63; I2 = 95.55%; P = 0.046), hypofunctional N-methyl-D-aspartate receptor (NMDAR) (SMD = −0.60; I2 = 91.47%; P < 0.001) and selective reduction of NMDAR-GluN2B subunit levels (SMD = −1.07; I2 = 41.81%; P < 0.001). Regional differences include lower glutamate levels in cortical areas and aspartate levels in cortical areas and in the hippocampus, reduced glutamate reuptake, reduced AMPAR-GluA2/3 in the entorhinal cortex, hypofunction of NMDAR in cortical areas, and a decrease in NMDAR-GluN2B subunit levels in the entorhinal cortex and hippocampus. Other parameters studied were not altered. Our findings show depletion of the glutamatergic system and emphasize the importance of understanding glutamate-mediated neurotoxicity in AD. This study has implications for the development of therapies and biomarkers in AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study selection.
Fig. 2: Forest plots of included studies evaluating glutamate reuptake, transporters, storage, recycling, and aspartate.
Fig. 3: Forest plots of included studies evaluating glutamate receptors.
Fig. 4: Summary of changes in the glutamatergic system in the AD brain.

Similar content being viewed by others

Data availability

Data will be provided upon reasonable request.

Code availability

Scripts used for statistical analysis will be provided upon reasonable request.

References

  1. Cox MF, Hascup ER, Bartke A, Hascup KN. Friend or Foe? Defining the role of glutamate in aging and Alzheimer’s disease. Front Aging. 2022;3:1–13.

    Article  Google Scholar 

  2. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325:529–31.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Mothet J-P, Parent AT, Wolosker H, Brady RO, Linden DJ, Ferris CD, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci. 2000;97:4926–31.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Milà-Alomà M, Brinkmalm A, Ashton NJ, Kvartsberg H, Shekari M, Operto G, et al. CSF synaptic biomarkers in the preclinical stage of Alzheimer disease and their association with MRI and PET A Cross-sectional Study. Neurology 2021;97:E2065–E2078.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tible M, Sandelius Å, Höglund K, Brinkmalm A, Cognat E, Dumurgier J, et al. Dissection of synaptic pathways through the CSF biomarkers for predicting Alzheimer disease. Neurology. 2020;95:e953–e961.

    Article  CAS  PubMed  Google Scholar 

  7. Galasko D, Xiao M, Xu D, Smirnov D, Salmon DP, Dewit N, et al. Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Inter. 2019;5:871–82.

    Google Scholar 

  8. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30:572–80.

    Article  CAS  PubMed  Google Scholar 

  9. Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer’s disease. Semin Cell Dev Biol. 2022;139:24–34.

    Article  PubMed  Google Scholar 

  10. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leffa DT, Panzenhagen AC, Salvi AA, Bau CHD, Pires GN, Torres ILS, et al. Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev. 2019;100:166–79.

    Article  CAS  PubMed  Google Scholar 

  13. Viechtbauer W Conducting Meta-Analyses in R with the metafor Package. J Stat Softw. 2010;36:1–48.

  14. Gryglewski G, Lanzenberger R, Silberbauer LR, Pacher D, Kasper S, Rupprecht R, et al. Meta-analysis of brain structural changes after electroconvulsive therapy in depression. Brain Stimul. 2021;14:927–37.

    Article  PubMed  Google Scholar 

  15. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  16. Miller RG. The Jackknife-A Review. Biometrika 1974;61:1.

    MathSciNet  Google Scholar 

  17. Gueli MC, Taibi G. Alzheimer’s disease: amino acid levels and brain metabolic status. Neurol Sci. 2013;34:1575–9.

    Article  PubMed  Google Scholar 

  18. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA. 1994;91:3270–4.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Keihan Falsafi S, Roßner S, Ghafari M, Groessl M, Morawski M, Gerner C, et al. Changes of several brain receptor complexes in the cerebral cortex of patients with Alzheimer disease: Probable new potential pharmaceutical targets. Amino Acids. 2014;46:223–33.

    Article  CAS  Google Scholar 

  20. Wang Y, TesFaye E, Yasuda RP, Mash DC, Armstrong DM, Wolfe BB. Effects of post-mortem delay on subunits of ionotropic glutamate receptors in human brain. Mol Brain Res. 2000;80:123–31.

    Article  CAS  PubMed  Google Scholar 

  21. Nuzzo T, Mancini A, Miroballo M, Casamassa A, Di Maio A, Donati G, et al. High performance liquid chromatography determination of l-glutamate, l-glutamine and glycine content in brain, cerebrospinal fluid and blood serum of patients affected by Alzheimer’s disease. Amino Acids. 2021;53:435–49.

    Article  CAS  PubMed  Google Scholar 

  22. Seidl R, Cairns N, Singewald N, Kaehler ST, Lubec G. Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology. Naunyn Schmiedebergs Arch Pharm. 2001;363:139–45.

    Article  CAS  Google Scholar 

  23. Lucas DR, Newhouse JP. The Toxic Effect of Sodium L-Glutamate on the Inner Layers of the Retina. Arch Ophthalmol. 1957;58:193–201.

    Article  CAS  Google Scholar 

  24. Manyevitch R, Protas M, Scarpiello S, Deliso M, Bass B, Nanajian A, et al. Evaluation of Metabolic and Synaptic Dysfunction Hypotheses of Alzheimer’s Disease (AD): A Meta-Analysis of CSF Markers. Curr Alzheimer Res. 2018;15:164–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR. Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol Aging. 2011;32:553.e1–11.

    Article  PubMed  Google Scholar 

  26. Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int. 2016;98:29–45.

    Article  CAS  PubMed  Google Scholar 

  27. Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, et al. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights. 2020;15:117727192095031.

    Article  Google Scholar 

  28. Rodriguez-Perdigon M, Tordera RM, Gil-Bea FJ, Gerenu G, Ramirez MJ, Solas M. Down-regulation of glutamatergic terminals (VGLUT1) driven by Aβ in Alzheimer’s disease. Hippocampus. 2016;26:1303–12.

    Article  CAS  PubMed  Google Scholar 

  29. Kashani A, Lepicard E, Poirel O, Videau C, David JP, Fallet-Bianco C, et al. Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging. 2008;29:1619–30.

    Article  CAS  PubMed  Google Scholar 

  30. Poirel O, Mella S, Videau C, Ramet L, Davoli MA, Herzog E, et al. Moderate decline in select synaptic markers in the prefrontal cortex (BA9) of patients with Alzheimer’s disease at various cognitive stages. Sci Rep. 2018;8:1–14.

    Article  CAS  Google Scholar 

  31. Kirvell SL, Esiri M, Francis PT. Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer’s disease. J Neurochem. 2006;98:939–50.

    Article  CAS  PubMed  Google Scholar 

  32. Mitew S, Kirkcaldie MTK, Dickson TC, Vickers JC. Altered synapses and gliotransmission in alzheimer’s disease and AD model mice. Neurobiol Aging. 2013;34:2341–51.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Esparcia P, Diaz-Lucena D, Ainciburu M, Torrejón-Escribano B, Carmona M, Llorens F, et al. Glutamate Transporter GLT1 Expression in Alzheimer Disease and Dementia With Lewy Bodies. Front Aging Neurosci. 2018;10:122.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sokolow S, Luu SH, Nandy K, Miller CA, Vinters HV, Poon WW, et al. Preferential accumulation of amyloid-beta in presynaptic glutamatergic terminals (VGluT1 and VGluT2) in Alzheimer’s disease cortex. Neurobiol Dis. 2012;45:381–7.

    Article  CAS  PubMed  Google Scholar 

  35. De Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimer’s Dement. 2016;12:633–44.

    Article  Google Scholar 

  36. Braak H, BRAAK E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  CAS  PubMed  Google Scholar 

  37. Albasanz JL, Dalfó E, Ferrer I, Martín M. Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis. 2005;20:685–93.

    Article  CAS  PubMed  Google Scholar 

  38. Dewar D, Chalmers DT, Graham DI, McCulloch J. Glutamate metabotropic and AMPA binding sites are reduced in Alzheimer’s disease: an autoradiographic study of the hippocampus. Brain Res. 1991;553:58–64.

    Article  CAS  PubMed  Google Scholar 

  39. Treyer V, Gietl AF, Suliman H, Gruber E, Meyer R, Buchmann A, et al. Reduced uptake of [11C]-ABP688, a PET tracer for metabolic glutamate receptor 5 in hippocampus and amygdala in Alzheimer’s dementia. Brain Behav. 2020;10:1–11.

    Article  Google Scholar 

  40. Ishibashi K, Miura Y, Toyohara J, Ishiwata K, Ishii K. Unchanged type 1 metabotropic glutamate receptor availability in patients with Alzheimer’s disease: A study using (11)C-ITMM positron emission tomography. NeuroImage Clin. 2019;22:101783.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jansen KLR, Faull RLM, Dragunow M, Synek BL. Alzheimer’s disease: Changes in hippocampal N-methyl-d-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors-an autoradiographic study. Neuroscience. 1990;39:613–27.

    Article  CAS  PubMed  Google Scholar 

  42. Geddes JW, Ułas J, Brunner LC, Choe W, Cotman CW. Hippocampal excitatory amino acid receptors in elderly, normal individuals and those with Alzheimer’s disease: Non-N-methyl-d-aspartate receptors. Neuroscience. 1992;50:23–34.

    Article  CAS  PubMed  Google Scholar 

  43. Cowburn RF, Hardy JA, Briggs RS, Roberts PJ. Characterisation, density, and distribution of kainate receptors in normal and Alzheimer’s diseased human brain. J Neurochem. 1989;52:140–7.

    Article  CAS  PubMed  Google Scholar 

  44. Chalmers DT, Dewar D, Graham DI, Brooks DN, McCulloch J. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type. Proc Natl Acad Sci USA. 1990;87:1352–6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Geddes JW, Cotman CW. Plasticity in hippocampal excitatory amino acid receptors in Alzheimer’s disease. Neurosci Res. 1986;3:672–8.

    Article  CAS  PubMed  Google Scholar 

  46. Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer’s disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry. 2022;12:257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl J Med. 2003;348:1333–41.

    Article  CAS  PubMed  Google Scholar 

  48. Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: Memantine and beyond. Nat Rev Drug Discov. 2006;5:160–70.

    Article  CAS  PubMed  Google Scholar 

  49. Tovar KR, McGinley MJ, Westbrook GL. Triheteromeric NMDA Receptors at Hippocampal Synapses. J Neurosci. 2013;33:9150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rönicke R, Mikhaylova M, Rönicke S, Meinhardt J, Schröder UH, Fändrich M, et al. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiol Aging. 2011;32:2219–28.

    Article  PubMed  Google Scholar 

  51. Hu N-W, Klyubin I, Anwyl R, Rowan MJ. GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo. Proc Natl Acad Sci USA. 2009;106:20504–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ Oligomers Inhibit Long-Term Potentiation through a Mechanism Involving Excessive Activation of Extrasynaptic NR2B-Containing NMDA Receptors. J Neurosci. 2011;31:6627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron. May 2023. https://doi.org/10.1016/j.neuron.2023.05.002. (2023).

  54. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14:383–400.

    Article  CAS  PubMed  Google Scholar 

  55. Masliah E, Alford M, Deteresa R, Mallory M, Hansen L Deficient Glutamate Transport Is Associated. (1996);1:759-66.

  56. Cross AJ, Slater P, Simpson M, Royston C, Deakin JF, Perry RH, et al. Sodium dependent D-[3H]aspartate binding in cerebral cortex in patients with Alzheimer’s and Parkinson’s diseases. Neurosci Lett. 1987;79:213–7.

    Article  CAS  PubMed  Google Scholar 

  57. Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl J Med. 1992;326:1464–8.

    Article  CAS  PubMed  Google Scholar 

  58. Cowburn R, Hardy J, Roberts P, Briggs R. Presynaptic and postsynaptic glutamatergic function in Alzheimer’s disease. Neurosci Lett. 1988;86:109–13.

    Article  CAS  PubMed  Google Scholar 

  59. Cowburn R, Hardy J, Roberts P, Briggs R. Regional distribution of pre- and postsynaptic glutamatergic function in Alzheimer’s disease. Brain Res. 1988;452:403–7.

    Article  CAS  PubMed  Google Scholar 

  60. Hardy J, Cowburn R, Barton A, Reynolds G, Lofdahl E, O’Carroll AM, et al. Region-specific loss of glutamate innervation in Alzheimer’s disease. Neurosci Lett. 1987;73:77–80.

    Article  CAS  PubMed  Google Scholar 

  61. Xuereb JH, Candy JM, Perry EK, Perry RH, Marshall E, Bonham JR. Distribution of neurofibrillary tangle formation and [3H]-D-aspartate receptor binding in the thalamus in the normal elderly brain, in Alzheimer’s disease and in Parkinson’s disease. Neuropathol Appl Neurobiol. 1990;16:477–88.

    Article  CAS  PubMed  Google Scholar 

  62. Li S, Mallory M, Alford M, Tanaka S, Masliah E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol. 1997;56:901–11.

    Article  CAS  PubMed  Google Scholar 

  63. Beckstrøm H, Julsrud L, Haugeto O, Dewar D, Graham DI, Lehre KP, et al. Interindividual differences in the levels of the glutamate transporters GLAST and GLT, but no clear correlation with Alzheimer’s disease. J Neurosci Res. 1999;55:218–29.

    Article  PubMed  Google Scholar 

  64. Simpson MD, Royston MC, Deakin JF, Cross AJ, Mann DM, Slater P. Regional changes in [3H]D-aspartate and [3H]TCP binding sites in Alzheimer’s disease brains. Brain Res. 1988;462:76–82.

    Article  CAS  PubMed  Google Scholar 

  65. Yeung JHY, Palpagama TH, Wood OWG, Turner C, Waldvogel HJ, Faull RLM, et al. EAAT2 Expression in the Hippocampus, Subiculum, Entorhinal Cortex and Superior Temporal Gyrus in Alzheimer’s Disease. Front Cell Neurosci. 2021;15:702824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Woltjer RL, Duerson K, Fullmer JM, Mookherjee P, Ryan AM, Montine TJ, et al. Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in alzheimer disease. J Neuropathol Exp Neurol. 2010;69:667–76.

    Article  CAS  PubMed  Google Scholar 

  67. Kobayashi E, Nakano M, Kubota K, Himuro N, Mizoguchi S, Chikenji T, et al. Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci Rep. 2018;8:1712.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  68. Tian G, Kong Q, Lai L, Ray-Chaudhury A, Lin CLG. Increased expression of cholesterol 24S-hydroxylase results in disruption of glial glutamate transporter EAAT2 association with lipid rafts: A potential role in Alzheimer’s disease. J Neurochem. 2010;113:978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoshi A, Tsunoda A, Yamamoto T, Tada M, Kakita A, Ugawa Y. Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer’s disease. Neuropathol Appl Neurobiol. 2018;44:628–38.

    Article  CAS  PubMed  Google Scholar 

  70. Sasaki H, Muramoto O, Kanazawa I, Arai H. Regional Distribution of Armno Acid Transmitters in Postmortem Brains of Presede and Sede Dementia of Alzheimer Type. Ann Neurol. 1986;19:263–9.

    Article  CAS  PubMed  Google Scholar 

  71. Hyman BT, Hoesen GW, Van, Damasio AR. Alzheimer ’ s Disease: Glutamate Depletion in the Hippocampal Perforant Pathway Zone. Ann Neurol. 1987;22:37–40.

    Article  CAS  PubMed  Google Scholar 

  72. Gramsbergen JB, Mountjoy CQ, Rossor MN, Reynolds GP, Roth M, Korf J. A correlative study on hippocampal cation shifts and amino acids and clinico-pathological data in Alzheimer’s disease. Neurobiol Aging. 1987;8:487–94.

    Article  CAS  PubMed  Google Scholar 

  73. Burbaeva GS, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS. Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res. 2005;30:1443–51.

    Article  CAS  PubMed  Google Scholar 

  74. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem. 1995;65:2146–56.

    Article  CAS  PubMed  Google Scholar 

  75. Jørgensen OS, Brooksbank BW, Balázs R. Neuronal plasticity and astrocytic reaction in Down syndrome and Alzheimer disease. J Neurol Sci. 1990;98:63–79.

    Article  PubMed  Google Scholar 

  76. Jansen KL, Faull RL, Dragunow M, Synek BL. Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors-an autoradiographic study. Neuroscience. 1990;39:613–27.

    Article  CAS  PubMed  Google Scholar 

  77. Pellegrini-Giampietro DE, Bennett MVL, Zukin RS. Ampa/kainate receptor gene expression in normal and alzheimer’s disease hippocampus. Neuroscience. 1994;61:41–49.

    Article  CAS  PubMed  Google Scholar 

  78. Díaz González M, Buberman A, Morales M, Ferrer I, Knafo S. Aberrant Synaptic PTEN in Symptomatic Alzheimer’s Patients May Link Synaptic Depression to Network Failure. Front Synaptic Neurosci. 2021;13:1–12.

    Article  Google Scholar 

  79. Yasuda RP, Ikonomovic MD, Sheffield R, Rubin RT, Wolfe BB, Armstrong DM. Reduction of AMPA-selective glutamate receptor subunits in the entorhinal cortex of patients with Alzheimer’s disease pathology: a biochemical study. Brain Res. 1995;678:161–7.

    Article  CAS  PubMed  Google Scholar 

  80. Wakabayashi K, Narisawa-Saito M, Iwakura Y, Arai T, Ikeda K, Takahashi H, et al. Phenotypic down-regulation of glutamate receptor subunit GluR1 in Alzheimer’s disease. Neurobiol Aging. 1999;20:287–95.

    Article  CAS  PubMed  Google Scholar 

  81. Thorns V, Mallory M, Hansen L, Masliah E. Alterations in glutamate receptor 2/3 subunits and amyloid precursor protein expression during the course of Alzheimer’s disease and Lewy body variant. Acta Neuropathol. 1997;94:539–48.

    Article  CAS  PubMed  Google Scholar 

  82. Yeung JHY, Walby JL, Palpagama TH, Turner C, Waldvogel HJ, Faull RLM, et al. Glutamatergic receptor expression changes in the Alzheimer’s disease hippocampus and entorhinal cortex. Brain Pathol. 2021;31:e13005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gong Y, Lippa CF, Zhu J, Lin Q, Rosso AL. Disruption of glutamate receptors at Shank-postsynaptic platform in Alzheimer’s disease. Brain Res. 2009;1292:191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsamis KI, Mytilinaios DG, Njau SN, Baloyannis SJ. Glutamate Receptors in Human Caudate Nucleus in Normal Aging and Alzheimer’s Disease. Curr Alzheimer Res. 2013;10:469–75.

    Article  CAS  PubMed  Google Scholar 

  85. Tsang SWY, Pomakian J, Marshall GA, Vinters HV, Cummings JL, Chen CPL-H, et al. Disrupted muscarinic M1 receptor signaling correlates with loss of protein kinase C activity and glutamatergic deficit in Alzheimer’s disease. Neurobiol Aging. 2007;28:1381–7.

    Article  CAS  PubMed  Google Scholar 

  86. Ułas J, Brunner LC, Geddes JW, Choe W, Cotman CW. N-methyl-D-aspartate receptor complex in the hippocampus of elderly, normal individuals and those with Alzheimer’s disease. Neuroscience. 1992;49:45–61.

    Article  PubMed  Google Scholar 

  87. Ninomiya H, Fukunaga R, Taniguchi T, Fujiwara M, Shimohama S, Kameyama M. [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine ([3H]TCP) binding in human frontal cortex: decreases in Alzheimer-type dementia. J Neurochem. 1990;54:526–32.

  88. Scheuer K, Maras A, Gattaz WF, Cairns N, Förstl H, Müller WE. Cortical NMDA Receptor Properties and Membrane Fluidity Are Altered in Alzheimer’s Disease. Dement Geriatr Cogn Disord. 1996;7:210–4.

    Article  CAS  Google Scholar 

  89. Palmer AM, Burns MA. Preservation of Redox, Polyamine, and Glycine Domains of the N-Methyl-D-Aspartate in Alzheimer’s Disease. J Neurochem. 2008;62:187–96.

    Article  Google Scholar 

  90. Shimohama S, Ninomiya H, Saitoh T, Terry RD, Fukunaga R, Taniguchi T, et al. Changes in signal transduction in Alzheimer’s disease. J Neural Transm Suppl. 1990;30:69–78.

    CAS  PubMed  Google Scholar 

  91. Mouradian MM, Contreras PC, Monahan JB, Chase TN. [3H]MK-801 binding in Alzheimer’s disease. Neurosci Lett. 1988;93:225–30.

    Article  CAS  PubMed  Google Scholar 

  92. Ułas J, Cotman CW. Decreased expression of N-methyl-D-aspartate receptor 1 messenger RNA in select regions of Alzheimer brain. Neuroscience. 1997;79:973–82.

    Article  PubMed  Google Scholar 

  93. Berchtold NC, Coleman PD, Cribbs DH, Rogers J, Gillen DL, Cotman CW. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol Aging. 2013;34:1653–61.

    Article  CAS  PubMed  Google Scholar 

  94. Elnagar MR, Walls AB, Helal GK, Hamada FM, Thomsen MS, Jensen AA. Probing the putative α7 nAChR/NMDAR complex in human and murine cortex and hippocampus: Different degrees of complex formation in healthy and Alzheimer brain tissue. PLoS One. 2017;12:e0189513.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bi H, Sze C-I. N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer’s disease. J Neurol Sci. 2002;200:11–8.

    Article  CAS  PubMed  Google Scholar 

  96. Sze CI, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ. N-Methyl-D-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. J Neurol Sci. 2001;182:151–9.

    Article  CAS  PubMed  Google Scholar 

  97. Marshall CA, McBride JD, Changolkar L, Riddle DM, Trojanowski JQ, Lee VMY. Inhibition of CK2 mitigates Alzheimer’s tau pathology by preventing NR2B synaptic mislocalization. Acta Neuropathol Commun. 2022;10:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee H, Ogawa O, Zhu X, O’Neill MJ, Petersen RB, Castellani RJ, et al. Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer’s disease. Acta Neuropathol. 2004;107:365–71.

    Article  CAS  PubMed  Google Scholar 

  99. D’Aniello A, Lee JM, Petrucelli L, Di Fiore MM. Regional decreases of free d-aspartate levels in Alzheimer’s disease. Neurosci Lett. 1998;250:131–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Grylewsky for the statistical support and assistance in writing the RStudio script.

Funding

C.S. has received funding from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [88887.696202/2022-00] and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [141357/2020-7]. A.R. is supported by CNPq [165626/2017–8 and 141254/2019–0] and Fulbright 2021 DDRA Award. G.C-C. has received funding from CAPES [88887.687008/2022-00]. G.L. has received funding from CAPES [88887.687008/2021-00]. L.M. has received funding from CAPES [88887.687008/2020-00]. B.B. has received financial support from CAPES [88887.336490/2019-00] and the Alzheimer’s Association (AA) [AARFD-22-974627]. J.P.F-S. receives financial support from CNPq [200691/2021-0]. M.A.B. has received funding from CNPq PDJ [25/2021]. T.A.P. is supported by AA [AACSF-20-648075] and the National Institute on Aging [R01AG075336; R01AG073267]. P.R-N. receives funding from Canadian Institute of Health Research [MOP-11-51-31 and RFN 152985; 159815; 162303], the Canadian Consortium of Neurodegeneration and Aging, the Weston Brain Institute, AA [NIRG-12-92090; NIRP-12-259245], the Brain Canada Foundation [34874 and 33397], and the Fonds de recherche en santé du Québec [2020-VICO-279314]. D.O.S. is supported by CNPQ/INCT [465671/2014-4], CNPQ/FAPERGS/PRONEX [16/2551- 0000475-7], and FAPERGS [19/2551-0000700-0]. E.R.Z. receives financial support from CNPq [312410/20182; 435642/2018-9; 312306/2021-0; 409066/2022-2], ARD/FAPERGS [21/2551-0000673-0], AA [AARGD-21-850670], CNPQ/FAPERGS/PRONEX [16/2551-0000475-7], the Brazilian National Institute of Science and Technology in Excitotoxicity and Neuroprotection [465671/2014-4], Instituto Serrapilheira [Serra-1912-31365], and National Academy of Neuropsychology [ALZ-NAN-22-928381].

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: C.S., G.C-C., B.B., and E.R.Z. Article screening and data extraction: C.S, L.U.dR., L.M., A.R. and G.L. Data preparation: C.S. and B.B. Meta-analysis: C.S. and M.A.B. Data interpretation: C.S., B.B. and E.R.Z. Manuscript preparation and figure elaboration: C.S. Intellectual content: all authors. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Eduardo R. Zimmer.

Ethics declarations

Competing interests

E.R.Z. served in the SAB of Novo Nordisk, serves on SAB of Next Innovative Therapeutics (Nintx) and serves on the SAB and is a Co-founder of MASIMA. P.R-N. served in the SAB of Novo Nordisk, Eisai and Ely Lilly and as a Consultant in Eisai and Cerveau radiopharmaceuticals. Other authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, C., Da Ros, L.U., Machado, L.S. et al. The glutamatergic system in Alzheimer’s disease: a systematic review with meta-analysis. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02473-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02473-0

Search

Quick links