Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

The association between inflammatory markers in blood and cerebrospinal fluid: a systematic review and meta-analysis

Abstract

Background

Neuroinflammatory processes have been hypothesized to play a role in the pathogenesis of psychiatric and neurological diseases. Studies on this topic often rely on analysis of inflammatory biomarkers in peripheral blood. Unfortunately, the extent to which these peripheral markers reflect inflammatory processes in the central nervous system (CNS) is unclear.

Methods

We performed a systematic review and found 29 studies examining the association between inflammatory marker levels in blood and cerebrospinal (CSF) samples. We performed a random effects meta-analysis of 21 studies (pooled n = 1679 paired samples) that reported the correlation of inflammatory markers in paired blood-CSF samples.

Results

A qualitative review revealed moderate to high quality of included studies with the majority of studies reporting no significant correlation of inflammatory markers between paired blood-CSF. Meta-analyses revealed a significant low pooled correlation between peripheral and CSF biomarkers (r = 0.21). Meta-analyses of individual cytokines revealed a significant pooled correlation for IL-6 (r = 0.26) and TNFα (r = 0.3) after excluding outlier studies, but not for other cytokines. Sensitivity analyses showed that correlations were highest among participants with a median age above 50 (r = 0.46) and among autoimmune disorder patients (r = 0.35).

Conclusion

This systematic review and meta-analysis revealed poor correlation between peripheral and central inflammatory markers in paired blood-CSF samples, with increased correlations in certain study populations. Based on the current findings, peripheral inflammatory markers are a poor reflection of the neuroinflammatory profile.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of interaction between peripheral and central inflammatory markers.
Fig. 2: Flowchart of study selection.
Fig. 3: Pooled cytokine correlations.
Fig. 4: Cytokine correlations of individual cytokines in paired blood and CSF after excluding outlier studies.
Fig. 5: Sensitivity analyses.

Similar content being viewed by others

References

  1. Qiu X, Xiao Y, Wu J, Gan L, Huang Y, Wang J. C-reactive protein and risk of Parkinson’s disease: a systematic review and meta-analysis. Front Neurol. 2019;10:384.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol. 2016;73:1316–24.

    Article  PubMed  Google Scholar 

  3. Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS, et al. IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis. Sci Rep. 2018;8:12050.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shen XN, Niu LD, Wang YJ, Cao XP, Liu Q, Tan L, et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry. 2019;90:590–8.

    Article  PubMed  Google Scholar 

  5. Hu Y, Cao C, Qin XY, Yu Y, Yuan J, Zhao Y, et al. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci Rep. 2017;7:9094.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21:1696–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135:373–87.

    Article  PubMed  Google Scholar 

  8. Park S, Miller BJ. Meta-analysis of cytokine and C-reactive protein levels in high-risk psychosis. Schizophr Res. 2020;226:5–12.

    Article  PubMed  Google Scholar 

  9. Misiak B, Bartoli F, Carrà G, Stańczykiewicz B, Gładka A, Frydecka D, et al. Immune-inflammatory markers and psychosis risk: A systematic review and meta-analysis. Psychoneuroendocrinology. 2021;127:105–200.

    Article  Google Scholar 

  10. Saghazadeh A, Ataeinia B, Keynejad K, Abdolalizadeh A, Hirbod-Mobarakeh A, Rezaei N. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, sex, and latitude. J Psychiatr Res. 2019;115:90–102.

    Article  PubMed  Google Scholar 

  11. Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44:75–83.

    Article  PubMed  Google Scholar 

  12. Sun YX, Minthon L, Wallmark A, Warkentin S, Blennow K, Janciauskiene S. Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2003;16:136–44.

    Article  CAS  PubMed  Google Scholar 

  13. Eidson LN, Kannarkat GT, Barnum CJ, Chang J, Chung J, Caspell-Garcia C, et al. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson’s disease. J Neuroinflammation. 2017;14:164.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Okafor EC, Hullsiek KH, Williams DA, Scriven JE, Rhein J, Nabeta HW, et al. Correlation between blood and CSF compartment cytokines and chemokines in subjects with cryptococcal meningitis. Mediators Inflamm. 2020;2020:8818044.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Felger JC, Haroon E, Patel TA, Goldsmith DR, Wommack EC, Woolwine BJ, et al. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol Psychiatry. 2020;25:1301–11.

    Article  CAS  PubMed  Google Scholar 

  16. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.

    Article  CAS  PubMed  Google Scholar 

  17. Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng. 2013;6:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grimm A, Friedland K, Eckert A. Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer’s disease. Biogerontology. 2016;17:281–96.

    Article  CAS  PubMed  Google Scholar 

  19. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6:393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun. 2017;60:1–12.

    Article  CAS  PubMed  Google Scholar 

  21. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71:1018–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engelhardt B. The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Des. 2008;14:1555–65.

    Article  CAS  PubMed  Google Scholar 

  23. Kratzer I, Ek J, Stolp H. The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. Biochim Biophys Acta Biomembr. 2020;1862:183430.

    Article  CAS  PubMed  Google Scholar 

  24. Saul J, Hutchins E, Reiman R, Saul M, Ostrow LW, Harris BT, et al. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2020;8:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17:35.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brown PD, Davies SL, Speake T, Millar ID. Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004;129:957–70.

    Article  CAS  PubMed  Google Scholar 

  27. Schwerk C, Tenenbaum T, Kim KS, Schroten H. The choroid plexus-a multi-role player during infectious diseases of the CNS. Front Cell Neurosci. 2015;9:80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Strazielle N, Khuth ST, Murat A, Chalon A, Giraudon P, Belin MF, et al. Pro-inflammatory cytokines modulate matrix metalloproteinase secretion and organic anion transport at the blood-cerebrospinal fluid barrier. J Neuropathol Exp Neurol. 2003;62:1254–64.

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberg GA (2017) Chapter 4 - Cerebrospinal fluid: formation, absorption, markers, and relationship to blood–brain barrier. In: Caplan LR, Biller J, Leary MC, Lo EH, Thomas AJ, Yenari M et al. (ed). Primer on Cerebrovascular Diseases (Second Edition). Academic Press, pp 25–31.

  30. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Garcia, E. On the Nonadditivity of Correlation Coefficients Part 1: Pearson’s r and Spearman’s r. http://www.minerazzi.com/tutorials/nonadditivity-correlations-part-1.pdf (2018).

  32. Zimmerman DW, Zumbo BD, Williams RH. Bias in estimation and hypothesis testing of correlation. Psicológica. 2003;24:133–58.

    Google Scholar 

  33. Viechtbauer W. Conducting meta-analyses in R with metafor package. J Stat Softw. 2010;36:1–48.

    Article  Google Scholar 

  34. Wilson DB, Lipsey MW. The role of method in treatment effectiveness research: evidence from meta-analysis. Psychol Methods. 2001;6:413–29.

    Article  CAS  PubMed  Google Scholar 

  35. Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005;30:261–93.

    Article  Google Scholar 

  36. Berkey CS, Hoaglin DC, Antczak-Bouckoms A, Mosteller F, Colditz GA. Meta-analysis of multiple outcomes by regression with random effects. Stat Med. 1998;17:2537–50.

    Article  CAS  PubMed  Google Scholar 

  37. Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM, Cochrane Diagnostic Test Accuracy Working Group. Systematic reviews of diagnostic test accuracy. Ann Intern Med. 2008;149:889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim SY, Buckwalter M, Soreq H, Vezzani A, Kaufer D. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia. 2012;53:37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kant S, Stopa EG, Johanson CE, Baird A, Silverberg GD. Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease. Fluids Barriers CNS. 2018;15:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14:577–89.

    Article  CAS  PubMed  Google Scholar 

  42. Alagaratnam J, von Widekind S, De Francesco D, Underwood J, Edison P, Winston A, et al. Correlation between CSF and blood neurofilament light chain protein: a systematic review and meta-analysis. BMJ Neurol Open. 2021;3:e000143.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Uher T, McComb M, Galkin S, Srpova B, Oechtering J, Barro C, et al. Neurofilament levels are associated with blood-brain barrier integrity, lymphocyte extravasation, and risk factors following the first demyelinating event in multiple sclerosis. Mult Scler. 2021;27:220–31.

    Article  PubMed  Google Scholar 

  44. Moss BP, Patel DC, Tavee JO, Culver DA. Evaluating S100B as a serum biomarker for central neurosarcoidosis. Respir Med. 2020;162:105855.

    Article  CAS  PubMed  Google Scholar 

  45. Thompson WH, Thelin EP, Lilja A, Bellander BM, Fransson P. Functional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury. Neuroimage Clin. 2016;12:1004–12.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thelin EP, Jeppsson E, Frostell A, Svensson M, Mondello S, Bellander BM, et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit Care. 2016;20:285.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abdelhak A, Huss A, Kassubek J, Tumani H, Otto M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci Rep. 2018;8:14798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Czeiter E, Amrein K, Gravesteijn BY, Lecky F, Menon DK, Mondello S, et al. Blood biomarkers on admission in acute traumatic brain injury: Relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine. 2020;56:102785.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhu N, Santos-Santos M, Illán-Gala I, Montal V, Estellés T, Barroeta I, et al. Plasma glial fibrillary acidic protein and neurofilament light chain for the diagnostic and prognostic evaluation of frontotemporal dementia. Transl Neurodegener. 2021;10:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2). Bulk tissue gene expression for NEFL (ENSG00000277586.2). Broad Institute of MIT and Harvard 2021 https://www.gtexportal.org/home/gene/NEFL.

  51. GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2). Bulk tissue gene expression for S100B (ENSG00000160307.9). Broad Institute of MIT and Harvard 2021. https://www.gtexportal.org/home/gene/S100B.

  52. Gonçalves CA, Leite MC, Guerra MC. Adipocytes as an important source of Serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol. 2010;2010:790431.

    PubMed  PubMed Central  Google Scholar 

  53. Hopkins SJ, Rothwell NJ. Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci. 1995;18:83–8.

    Article  CAS  PubMed  Google Scholar 

  54. Stampanoni Bassi M, Iezzi E, Drulovic J, Pekmezovic T, Gilio L, Furlan R, et al. IL-6 in the cerebrospinal fluid signals disease activity in multiple sclerosis. Front Cell Neurosci. 2020;14:120.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dürr M, Nissen G, Sühs KW, Schwenkenbecher P, Geis C, Ringelstein M, et al. CSF findings in acute NMDAR and LGI1 antibody-associated autoimmune ancephalitis. Neurol Neuroimmunol Neuroinflamm. 2021;8:e1086.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Majed M, Fryer JP, McKeon A, Lennon VA, Pittock SJ. Clinical utility of testing AQP4-IgG in CSF: Guidance for physicians. Neurol Neuroimmunol Neuroinflamm. 2016;3:e231.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhou X, Fragala MS, McElhaney JE, Kuchel GA. Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr Opin Clin Nutr Metab Care. 2010;13:541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gottfried-Blackmore A, Rubin SJS, Bai L, Aluko S, Yang Y, Park W, et al. Effects of processing conditions on stability of immune analytes in human blood. Sci Rep. 2020;10:17328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Flower L, Ahuja RH, Humphries SE, Mohamed-Ali V. Effects of sample handling on the stability of interleukin 6, tumour necrosis factor-alpha and leptin. Cytokine. 2000;12:1712–6.

    Article  CAS  PubMed  Google Scholar 

  60. de Jager W, Bourcier K, Rijkers GT, Prakken BJ, Seyfert-Margolis V. Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol. 2009;10:52.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Thavasu PW, Longhurst S, Joel SP, Slevin ML, Balkwill FR. Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J Immunol Methods. 1992;153:115–24.

    Article  CAS  PubMed  Google Scholar 

  62. Sisay S, Lopez-Lozano L, Mickunas M, Quiroga-Fernández A, Palace J, Warnes G, et al. Untreated relapsing-remitting multiple sclerosis patients show antibody production against latent Epstein Barr Virus (EBV) antigens mainly in the periphery and innate immune IL-8 responses preferentially in the CNS. J Neuroimmunol. 2017;306:40–5.

    Article  CAS  PubMed  Google Scholar 

  63. Baker DG, Ekhator NN, Kasckow JW, Hill KK, Zoumakis E, Dashevsky BA, et al. Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation. 2001;9:209–17.

    Article  CAS  PubMed  Google Scholar 

  64. Agorastos A, Hauger RL, Barkauskas DA, Lerman IR, Moeller-Bertram T, Snijders C, et al. Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology. 2019;100:237–5.

    Article  CAS  PubMed  Google Scholar 

  65. Akilimali NA, Chang CC, Muema DM, Reddy T, Moosa MS, Lewin SR, et al. Plasma but not cerebrospinal fluid Interleukin 7 and Interleukin 5 levels pre-antiretroviral therapy commencement predict cryptococcosis-associated immune reconstitution inflammatory syndrome. Clin Infect Dis. 2017;65:1551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Basu S, Agarwal P, Anupurba S, Shukla R, Kumar A. Elevated plasma and cerebrospinal fluid interleukin-1 beta and tumor necrosis factor-alpha concentration and combined outcome of death or abnormal neuroimaging in preterm neonates with early-onset clinical sepsis. J Perinatol. 2015;35:855–61.

    Article  CAS  PubMed  Google Scholar 

  67. Burwick RM, Togioka BM, Speranza RJ, Gaffney JE, Roberts VHJ, Frias AE, et al. Assessment of blood-brain barrier integrity and neuroinflammation in preeclampsia. Am J Obstet Gynecol. 2019;221:269.e1–269.e8.

    Article  PubMed  Google Scholar 

  68. Casals-Pascual C, Idro R, Gicheru N, Gwer S, Kitsao B, Gitau E, et al. High levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria. Proc Natl Acad Sci USA. 2008;105:2634–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Courtioux B, Pervieux L, Vatunga G, Marin B, Josenando T, Jauberteau-Marchan MO, et al. Increased CXCL-13 levels in human African trypanosomiasis meningo-encephalitis. Trop Med Int Health. 2009;14:529–34.

    Article  CAS  PubMed  Google Scholar 

  70. Ellison VJ, Mocatta TJ, Winterbourn CC, Darlow BA, Volpe JJ, Inder TE. The relationship of CSF and plasma cytokine levels to cerebral white matter injury in the premature newborn. Pediatr Res. 2005;57:282–6.

    Article  CAS  PubMed  Google Scholar 

  71. Gallo P, Piccinno MG, Tavolato B, Sidén A. A longitudinal study on IL-2, sIL-2R, IL-4, and IFN-gamma in multiple sclerosis CSF and serum. J Neurol Sci. 1991;101:227–32.

    Article  CAS  PubMed  Google Scholar 

  72. Han W, Jin F, Zhang H, Yang M, Cui C, Wang C, et al. Association of brain-gut peptides with inflammatory cytokines in Moyamoya disease. Mediators Inflamm. 2020;2020:5847478.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hirohata S, Miyamoto T. Elevated levels of interleukin-6 in cerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum. 1990;33:644–9.

    Article  CAS  PubMed  Google Scholar 

  74. Hirohata S, Isshi K, Oguchi H, Ohse T, Haraoka H, Takeuchi A, et al. Cerebrospinal fluid interleukin-6 in progressive Neuro-Behçet’s syndrome. Clin Immunol Immunopathol. 1997;82:12–7.

    Article  CAS  PubMed  Google Scholar 

  75. Hirohata S, Kikuchi H. Role of Serum IL-6 in neuropsychiatric systemic lupus Erythematosus. ACR Open Rheumatol. 2021;3:42–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hopkins SJ, McMahon CJ, Singh N, Galea J, Hoadley M, Scarth S, et al. Cerebrospinal fluid and plasma cytokines after subarachnoid haemorrhage: CSF interleukin-6 may be an early marker of infection. J Neuroinflammation. 2012;9:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Laurenzi MA, Sidén A, Persson MA, Norkrans G, Hagberg L, Chiodi F. Cerebrospinal fluid interleukin-6 activity in HIV infection and inflammatory and noninflammatory diseases of the nervous system. Clin Immunol Immunopathol. 1990;57:233–41.

    Article  CAS  PubMed  Google Scholar 

  78. Lerche S, Zimmermann M, Wurster I, Roeben B, Fries FL, Deuschle C, et al. CSF and serum levels of inflammatory markers in PD: Sparse correlation, sex differences and association with neurodegenerative biomarkers. Front Neurol. 2022;13:834580.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Miller ES, Sakowicz A, Roy A, Yang A, Sullivan JT, Grobman WA, et al. Plasma and cerebrospinal fluid inflammatory cytokines in perinatal depression. Am J Obstet Gynecol. 2019;220:271.e1–271.e10.

    Article  CAS  PubMed  Google Scholar 

  80. Rota E, Bellone G, Rocca P, Bergamasco B, Emanuelli G, Ferrero P. Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients. Neurol Sci. 2006;27:33–9.

    Article  CAS  PubMed  Google Scholar 

  81. Senel M, Rupprecht TA, Tumani H, Pfister HW, Ludolph AC, Brettschneider J. The chemokine CXCL13 in acute neuroborreliosis. J Neurol Neurosurg Psychiatry. 2010;81:929–33.

    Article  PubMed  Google Scholar 

  82. Sinha P, Modi M, Prabhakar S, Singh P. Do cytokines correlate with disease activity in tuberculous meningitis. Neurol Asia. 2015;20:243–50.

    Google Scholar 

  83. Sjögren M, Folkesson S, Blennow K, Tarkowski E. Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications. J Neurol Neurosurg Psychiatry. 2004;75:1107–11.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Weller M, Stevens A, Sommer N, Wiethölter H, Dichgans J. Cerebrospinal fluid interleukins, immunoglobulins, and fibronectin in neuroborreliosis. Arch Neurol. 1991;48:837–41.

    Article  CAS  PubMed  Google Scholar 

  85. Wijeyekoon RS, Kronenberg-Versteeg D, Scott KM, Hayat S, Kuan WL, Evans JR, et al. Peripheral innate immune and bacterial signals relate to clinical heterogeneity in Parkinson’s disease. Brain Behav Immun. 2020;87:473–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yuan L, Liu A, Qiao L, Sheng B, Xu M, Li W, et al. The relationship of CSF and plasma cytokine levels in HIV-infected patients with neurocognitive impairment. Biomed Res Int. 2015;2015:506872.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zin CS, Nissen LM, O’Callaghan JP, Moore BJ, Smith MT. Preliminary study of the plasma and cerebrospinal fluid concentrations of IL-6 and IL-10 in patients with chronic pain receiving intrathecal opioid infusions by chronically implanted pump for pain management. Pain Med. 2010;11:550–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded through two R01 grants from the NIMH (1R01MH127315-01A1; 1R01MH124776-01A1) and the Friedman Brain Institute (FBI) Research Scholars Award (Dyal Award) at the Icahn School of Medicine at Mount Sinai. We would like to thank the Dyal family for their generous contribution.

Funding

MMP-R has received research grant funding from Neurocrine Biosciences, Inc, Millennium Pharmaceuticals, Takeda, and AI Cure. She is a consultant for Neurocrine Biosciences, Inc. and Alkermes. She has served on an advisory board for Neurocrine Biosciences Inc. LdW has received research grant funding from Alector Inc. FAJG, ES, BC, GS, DK, VB have nothing to disclose.

Author information

Authors and Affiliations

Authors

Contributions

FG, ES, MPR, and LW conceptualized the study. FG, ES, BC, and KM performed the systematic literature search and data extraction. FG and ES wrote the initial draft. FG, ES, BC, KM, GS, DK, VB, MPR, and LW critically revised the manuscript. LW and MPR supervised the project. All authors approved the final submission.

Corresponding authors

Correspondence to Frederieke A. J. Gigase or Lotje D. De Witte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigase, F.A.J., Smith, E., Collins, B. et al. The association between inflammatory markers in blood and cerebrospinal fluid: a systematic review and meta-analysis. Mol Psychiatry 28, 1502–1515 (2023). https://doi.org/10.1038/s41380-023-01976-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-01976-6

This article is cited by

Search

Quick links