Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Peripheral immune function and Alzheimer’s disease: a living systematic review and critical appraisal

Abstract

Background

A growing body of literature examines the relationship between peripheral immune function and Alzheimer’s Disease (AD) in human populations. Our living systematic review summarizes the characteristics and findings of these studies, appraises their quality, and formulates recommendations for future research.

Methods

We searched the electronic databases PubMed, PsycINFO, and Web of Science, and reviewed references of previous reviews and meta-analyses to identify human studies examining the relationship between any peripheral immune biomarkers and AD up to September 7th, 2023. We examined patterns of reported statistical associations (positive, negative, and null) between each biomarker and AD across studies. Evidence for each biomarker was categorized into four groups based on the proportion of studies reporting different associations: corroborating a positive association with AD, a negative association, a null association, and presenting contradictory findings. A modified Newcastle–Ottawa scale (NOS) was employed to assess the quality of the included studies.

Findings

In total, 286 studies were included in this review. The majority were cross-sectional (n = 245, 85.7%) and hospital-based (n = 248, 86.7%), examining relationships between 187 different peripheral immune biomarkers and AD. Cytokines were the most frequently studied group of peripheral immune biomarkers. Evidence supported a positive association with AD for six biomarkers, including IL-6, IL-1β, IFN-γ, ACT, IL-18, and IL-12, and a negative association for two biomarkers, including lymphocytes and IL-6R. Only a small proportion of included studies (n = 22, 7.7%) were deemed to be of high quality based on quality assessment.

Interpretation

Existing research on peripheral immune function and AD exhibits substantial methodological variations and limitations, with a notable lack of longitudinal, population-based studies investigating a broad range of biomarkers with prospective AD outcomes. The extent and manner in which peripheral immune function can contribute to AD pathophysiology remain open questions. Given the biomarkers that we identified to be associated with AD, we posit that targeting peripheral immune dysregulation may present a promising intervention point to reduce the burden of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theoretical mechanistic framework depicting the hypothesized relationship between peripheral and central immune dysregulation and neurophysiology.
Fig. 2
Fig. 3: Summary of reported findings across included studies.
Fig. 4: Quality assessment of included studies on peripheral immunity and AD.

Similar content being viewed by others

Data availability

The data used in this study are all presented in the main tables or supplementary materials.Additional data and code to generate findings reported in this study are available from theGitHub repository (https://github.com/Peripheral-immune-AD/Peripheral-immune-and-AD).

References

  1. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021;17:327–406.

  2. Collaborators GDF. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7:e105–e25.

    Article  Google Scholar 

  3. Pawelec G, Solana R. Immunosenescence. Immunol Today. 1997;18:514–6.

    Article  CAS  PubMed  Google Scholar 

  4. Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology. 2007;120:435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pawelec G. Age and immunity: What is “immunosenescence”? Exp Gerontol. 2018;105:4–9.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Y, Zhan JK, Liu Y. A perspective on roles played by immunosenescence in the pathobiology of Alzheimer’s disease. Aging Dis. 2020;11:1594–607.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Noppert GA, Stebbins RC, Dowd JB, Hummer RA, Aiello AE. Life course socioeconomic disadvantage and the aging immune system: findings from the health and retirement study. J Gerontol B Psychol Sci Soc Sci. 2021;76:1195–205.

    Article  PubMed  Google Scholar 

  8. Klopack ET, Crimmins EM, Cole SW, Seeman TE, Carroll JE. Social stressors associated with age-related T lymphocyte percentages in older US adults: Evidence from the US Health and Retirement Study. Proc Natl Acad Sci USA. 2022;119:e2202780119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noppert GA, Stebbins RC, Dowd JB, Aiello AE. Socioeconomic and race/ethnic differences in immunosenescence: EVIDENCE FROM THE HEALTH AND RETIREMENT STUdy. Brain Behav Immun. 2022;107:361–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Noppert GA, Duchowny KA, Stebbins R, Aiello AE, Dowd JB, Clarke P. Biological expressions of early life trauma in the immune system of older adults. PLoS One. 2023;18:e0286141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12:623–35.

    Article  CAS  PubMed  Google Scholar 

  12. Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36:569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fakhoury M. Role of immunity and inflammation in the pathophysiology of neurodegenerative diseases. Neurodegener Dis. 2015;15:63–9.

    Article  CAS  PubMed  Google Scholar 

  14. Rawji KS, Mishra MK, Michaels NJ, Rivest S, Stys PK, Yong VW. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain. 2016;139:653–61.

    Article  PubMed  PubMed Central  Google Scholar 

  15. VanItallie TB. Alzheimer’s Disease: Innate immunity gone awry? Metabolism. 2017;69S:S41–9.

    Article  PubMed  Google Scholar 

  16. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s Disease. Alzheimers Dement (N. Y). 2018;4:575–90.

    Article  PubMed  Google Scholar 

  17. Pasqualetti G, Brooks DJ, Edison P. The role of neuroinflammation in dementias. Curr Neurol Neurosci Rep. 2015;15:17.

    Article  PubMed  Google Scholar 

  18. Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, et al. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol. 2019;15:540–55.

    Article  PubMed  Google Scholar 

  19. Bettcher BM, Tansey MG, Dorothée G, Heneka MT. Peripheral and central immune system crosstalk in Alzheimer disease—a research prospectus. Nat Rev Neurol. 2021;17:689–701.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koyama A, O’Brien J, Weuve J, Blacker D, Metti AL, Yaffe K. The role of peripheral inflammatory markers in dementia and Alzheimer’s Disease: A meta-analysis. J Gerontol A Biol Sci Med Sci. 2013;68:433–40.

    Article  CAS  PubMed  Google Scholar 

  21. Morris G, Berk M, Maes M, Puri BK. Could Alzheimer’s disease originate in the periphery and if so how so? Mol Neurobiol. 2019;56:406–34.

    Article  CAS  PubMed  Google Scholar 

  22. De Luigi A, Pizzimenti S, Quadri P, Lucca U, Tettamanti M, Fragiacomo C, et al. Peripheral inflammatory response in Alzheimer’s disease and multiinfarct dementia. Neurobiol Dis. 2002;11:308–14.

    Article  PubMed  Google Scholar 

  23. Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci. 2017;20:136–44.

    Article  CAS  PubMed  Google Scholar 

  24. Cao W, Zheng H. Peripheral immune system in aging and Alzheimer’s disease. Mol Neurodegener. 2018;13:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Korin B, Ben-Shaanan TL, Schiller M, Dubovik T, Azulay-Debby H, Boshnak NT, et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat Neurosci. 2017;20:1300–9.

    Article  CAS  PubMed  Google Scholar 

  26. Yang Q, Wang G, Zhang F. Role of peripheral immune cells-mediated inflammation on the process of neurodegenerative diseases. Front Immunol. 2020;11:582825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer Disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang YR, Wang JJ, Chen SF, Wang HF, Li YZ, Ou YN, et al. Peripheral immunity is associated with the risk of incident dementia. Mol Psychiatry. 2022;27:1956–62.

    Article  CAS  PubMed  Google Scholar 

  29. Wu KM, Zhang YR, Huang YY, Dong Q, Tan L, Yu JT. The role of the immune system in Alzheimer’s Disease. Ageing Res Rev. 2021;70:101409.

    Article  CAS  PubMed  Google Scholar 

  30. Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s Disease. Nature. 2020;577:399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Altendorfer B, Unger MS, Poupardin R, Hoog A, Asslaber D, Gratz IK, et al. Transcriptomic profiling identifies CD8(+) T cells in the brain of aged and Alzheimer’s disease transgenic mice as tissue-resident memory T cells. J Immunol. 2022;209:1272–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng W, Zhang Y, Ding S, Chen S, Wang T, Wang Z, et al. B lymphocytes ameliorate Alzheimer’s disease-like neuropathology via interleukin-35. Brain Behav Immun. 2023;108:16–31.

    Article  CAS  PubMed  Google Scholar 

  33. Muñoz-Castro C, Mejias-Ortega M, Sanchez-Mejias E, Navarro V, Trujillo-Estrada L, Jimenez S, et al. Monocyte-derived cells invade brain parenchyma and amyloid plaques in human Alzheimer’s disease hippocampus. Acta Neuropathol Commun. 2023;11:31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med. 2015;21:880–6.

    Article  CAS  PubMed  Google Scholar 

  35. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13:875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longev Healthspan. 2013;2:8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007;211:144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Palmer DB. The effect of age on thymic function. Front Immunol. 2013;4:316.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heavener KS, Bradshaw EM. The aging immune system in Alzheimer’s and Parkinson’s diseases. Semin Immunopathol. 2022;44:649–57.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, et al. Occurrence of T cells in the brain of Alzheimer’s Disease and other neurological diseases. J Neuroimmunol. 2002;124:83–92.

    Article  CAS  PubMed  Google Scholar 

  41. Glymour MM, Manly JJ. Lifecourse social conditions and racial and ethnic patterns of cognitive aging. Neuropsychol Rev. 2008;18:223–54.

    Article  PubMed  Google Scholar 

  42. Mayeda ER, Glymour MM, Quesenberry CP, Whitmer RA. Inequalities in dementia incidence between six racial and ethnic groups over 14 years. Alzheimers Dement. 2016;12:216–24.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Franco Bocanegra DK, Nicoll JAR, Boche D. Innate immunity in Alzheimer’s disease: the relevance of animal models? J Neural Transm (Vienna). 2018;125:827–46.

    Article  CAS  PubMed  Google Scholar 

  44. Le Page A, Dupuis G, Frost EH, Larbi A, Pawelec G, Witkowski JM, et al. Role of the peripheral innate immune system in the development of Alzheimer’s Disease. Exp Gerontol. 2018;107:59–66.

    Article  PubMed  Google Scholar 

  45. Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer Disease: APOE and TREM2 in the spotlight. Nat Rev Immunol. 2018;18:759–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s Disease. Immunol Cell Biol. 2020;98:28–41.

    Article  PubMed  Google Scholar 

  47. Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G. Common peripheral immunity mechanisms in multiple Sclerosis and Alzheimer’s Disease. Front Immunol. 2021;12:639369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perry RT, Collins JS, Wiener H, Acton R, Go RC. The role of TNF and its receptors in Alzheimer’s disease. Neurobiol Aging. 2001;22:873–83.

    Article  CAS  PubMed  Google Scholar 

  49. Lee KS, Chung JH, Choi TK, Suh SY, Oh BH, Hong CH. Peripheral cytokines and chemokines in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2009;28:281–7.

    Article  CAS  PubMed  Google Scholar 

  50. Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68:930–41.

    Article  CAS  PubMed  Google Scholar 

  51. Hedges DW, Farrer TJ, Brown BL. Association between C-reactive protein and cognitive deficits in elderly men and women: a meta-analysis. Int Psychogeriatr. 2012;24:1387–92.

    Article  PubMed  Google Scholar 

  52. Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol. 2014;50:534–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang J, Fan C, Pan L, Xie M, He Q, Li D, et al. C-reactive protein plays a marginal role in cognitive decline: a systematic review and meta-analysis. Int J Geriatr Psychiatry. 2015;30:156–65.

    Article  PubMed  Google Scholar 

  54. Gong C, Wei D, Wang Y, Ma J, Yuan C, Zhang W, et al. A meta-analysis of C-reactive protein in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2016;31:194–200.

    Article  PubMed  Google Scholar 

  55. Esteras N, Alquézar C, de la Encarnación A, Martín-Requero Á. Lymphocytes in Alzheimer’s disease pathology: altered signaling pathways. Curr Alzheimer Res. 2016;13:439–49.

    Article  CAS  PubMed  Google Scholar 

  56. Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS, et al. IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s Disease: Systematic review and meta-analysis. Sci Rep. 2018;8:12050.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Del Giudice M, Gangestad SW. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav Immun. 2018;70:61–75.

    Article  PubMed  Google Scholar 

  58. Plantone D, Pardini M, Locci S, Nobili F, De Stefano N. B lymphocytes in Alzheimer’s disease-a comprehensive review. J Alzheimers Dis. 2022;88:1241–62.

    Article  CAS  PubMed  Google Scholar 

  59. Anuradha U, Kumar A, Singh RK. The clinical correlation of proinflammatory and anti-inflammatory biomarkers with Alzheimer disease: a meta-analysis. Neurol Sci. 2022;43:285–98.

    Article  PubMed  Google Scholar 

  60. Long S, Chen Y, Meng Y, Yang Z, Wei M, Li T, et al. Peripheral high levels of CRP predict progression from normal cognition to dementia: A systematic review and meta-analysis. J Clin Neurosci. 2023;107:54–63.

    Article  CAS  PubMed  Google Scholar 

  61. Gautam AS, Pulivarthi CB, Singh RK. Proinflammatory IL-17 levels in serum/cerebrospinal fluid of patients with neurodegenerative diseases: a meta-analysis study. Naunyn Schmiedebergs Arch Pharm. 2023;396:577–88.

    Article  CAS  Google Scholar 

  62. Chihara N, Tsuji A, Matsumoto R. Neuroinflammation and neuroimmunology in Alzheimer’s disease: The role of T-lymphocytes in Alzheimer’s disease. Clin Exp Neuroimmunol. 2023;14:92–9.

    Article  CAS  Google Scholar 

  63. Elliott JH, Synnot A, Turner T, Simmonds M, Akl EA, McDonald S, et al. Living systematic review: 1. Introduction-the why, what, when, and how. J Clin Epidemiol. 2017;91:23–30.

    Article  PubMed  Google Scholar 

  64. Simmonds M, Elliott JH, Synnot A, Turner T. Living systematic reviews. Methods Mol Biol. 2022;2345:121–34.

    Article  CAS  PubMed  Google Scholar 

  65. Li C, Lumey LH. Exposure to the Chinese famine of 1959-61 in early life and long-term health conditions: a systematic review and meta-analysis. Int J Epidemiol. 2017;46:1157–70.

    Article  PubMed  Google Scholar 

  66. Li C, Lumey LH. Early-life exposure to the chinese famine of 1959–1961 and type 2 diabetes in adulthood: a systematic review and meta-analysis. Nutrients. 2022;14:2855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo B, Zhao C, He MZ, Senter C, Zhou Z, Peng J, et al. Identifying patterns of reported findings on long-term cardiac complications of COVID-19: a systematic review and meta-analysis. BMC Med. 2023;21:468.

  68. Lai KSP, Liu CS, Rau A, Lanctôt KL, Köhler CA, Pakosh M, et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry. 2017;88:876–82.

    Article  PubMed  Google Scholar 

  69. Darweesh SKL, Wolters FJ, Ikram MA, de Wolf F, Bos D, Hofman A. Inflammatory markers and the risk of dementia and Alzheimer’s disease: A meta-analysis. Alzheimers Dement. 2018;14:1450–9.

    Article  PubMed  Google Scholar 

  70. Shen XN, Niu LD, Wang YJ, Cao XP, Liu Q, Tan L, et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry. 2019;90:590–8.

    Article  PubMed  Google Scholar 

  71. Su C, Zhao K, Xia H, Xu Y. Peripheral inflammatory biomarkers in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Psychogeriatrics. 2019;19:300–9.

    Article  PubMed  Google Scholar 

  72. van Oijen M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM. Fibrinogen is associated with an increased risk of Alzheimer disease and vascular dementia. Stroke. 2005;36:2637–41.

    Article  PubMed  Google Scholar 

  73. Tan ZS, Beiser AS, Vasan RS, Roubenoff R, Dinarello CA, Harris TB, et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology. 2007;68:1902–8.

    Article  CAS  PubMed  Google Scholar 

  74. Gu Y, Luchsinger JA, Stern Y, Scarmeas N. Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer’s disease. J Alzheimers Dis. 2010;22:483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hendrie HC, Hake A, Lane K, Purnell C, Unverzagt F, Smith-Gamble V, et al. Statin use, incident dementia and Alzheimer disease in elderly African Americans. Ethn Dis. 2015;25:345–54.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ritchie K, Carrière I, Berr C, Amieva H, Dartigues JF, Ancelin ML, et al. The clinical picture of Alzheimer’s disease in the decade before diagnosis: clinical and biomarker trajectories. J Clin Psychiatry. 2016;77:e305–11.

    Article  PubMed  Google Scholar 

  77. André P, Samieri C, Buisson C, Dartigues JF, Helmer C, Laugerette F, et al. Lipopolysaccharide-binding protein, soluble CD14, and the long-term risk of Alzheimer’s disease: A nested case-control pilot study of older community dwellers from the three-city cohort. J Alzheimers Dis. 2019;71:751–61.

    Article  PubMed  Google Scholar 

  78. Thomas AJ, Hamilton CA, Donaghy PC, Martin-Ruiz C, Morris CM, Barnett N, et al. Prospective longitudinal evaluation of cytokines in mild cognitive impairment due to AD and Lewy body disease. Int J Geriatr Psychiatry. 2020;35:1250–9.

    Article  PubMed  Google Scholar 

  79. Hao J, Qiao Y, Li T, Yang J, Song Y, Jia L, et al. Investigating changes in the serum inflammatory factors in Alzheimer’s Disease and their correlation with cognitive function. J Alzheimers Dis. 2021;84:835–42.

    Article  CAS  PubMed  Google Scholar 

  80. Sundelöf J, Kilander L, Helmersson J, Larsson A, Rönnemaa E, Degerman-Gunnarsson M, et al. Systemic inflammation and the risk of Alzheimer’s Disease and dementia: A prospective population-based study. J Alzheimers Dis. 2009;18:79–87.

    Article  PubMed  Google Scholar 

  81. Engelhart MJ, Geerlings MI, Meijer J, Kiliaan A, Ruitenberg A, van Swieten JC, et al. Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Arch Neurol. 2004;61:668–72.

    Article  PubMed  Google Scholar 

  82. Ravaglia G, Forti P, Maioli F, Chiappelli M, Montesi F, Tumini E, et al. Blood inflammatory markers and risk of dementia: the conselice study of brain aging. Neurobiol Aging. 2007;28:1810–20.

    Article  CAS  PubMed  Google Scholar 

  83. Fohner AE, Sitlani CM, Buzkova P, Doyle MF, Liu X, Bis JC, et al. Association of peripheral lymphocyte subsets with cognitive decline and dementia: the cardiovascular health study. J Alzheimers Dis. 2022;88:7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chen J, Doyle MF, Fang Y, Mez J, Crane PK, Scollard P, et al. Peripheral inflammatory biomarkers are associated with cognitive function and dementia: Framingham Heart Study Offspring cohort. Aging Cell. 2023;22:e13955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Luo J, Thomassen JQ, Nordestgaard BG, Tybjærg-Hansen A, Frikke-Schmidt R. Blood leukocyte counts in Alzheimer disease. JAMA Netw Open. 2022;5:e2235648.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fang Y, Doyle MF, Chen J, Alosco ML, Mez J, Satizabal CL, et al. Association between inflammatory biomarkers and cognitive aging. PLoS One. 2022;17:e0274350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang X, Sanders JL, Boudreau RM, Arnold AM, Justice JN, Espeland MA, et al. Association of a blood-based aging biomarker index with death and chronic disease: Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 2023;19:glad172.

    Article  Google Scholar 

  88. Stebbins RC, Edwards JK, Plassman BL, Yang YC, Noppert GA, Haan M, et al. Immune function, cortisol, and cognitive decline & dementia in an aging latino population. Psychoneuroendocrinology. 2021;133:105414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15:eadf5681.

    Article  CAS  PubMed  Google Scholar 

  90. van der Willik KD, Fani L, Rizopoulos D, Licher S, Fest J, Schagen SB, et al. Balance between innate versus adaptive immune system and the risk of dementia: a population-based cohort study. J Neuroinflammation. 2019;16:68.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chou OHI, Zhou J, Li L, Chan JSK, Satti DI, Chou VHC, et al. The association between neutrophil-lymphocyte ratio and variability with new-onset dementia: a population-based cohort study. J Alzheimers Dis. 2023;94:547–57.

    Article  CAS  PubMed  Google Scholar 

  92. Kravitz BA, Corrada MM, Kawas CH. High levels of serum C-reactive protein are associated with greater risk of all-cause mortality, but not dementia, in the oldest-old: results from The 90+ Study. J Am Geriatr Soc. 2009;57:641–6.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cooper J, Pastorello Y, Slevin M. A meta-analysis investigating the relationship between inflammation in autoimmune disease, elevated CRP, and the risk of dementia. Front Immunol. 2023;14:1087571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Farina MP, Kim JK, Hayward MD, Crimmins EM. Links between inflammation and immune functioning with cognitive status among older Americans in the Health and Retirement Study. Brain Behav Immun Health. 2022;26:100559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Renson A, Mullan Harris K, Dowd JB, Gaydosh L, McQueen MB, Krauter KS, et al. Early signs of gut microbiome aging: Biomarkers of inflammation, metabolism, and macromolecular damage in young adulthood. J Gerontol A Biol Sci Med Sci. 2020;75:1258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kukull WA. The association between smoking and Alzheimer’s disease: effects of study design and bias. Biol Psychiatry. 2001;49:194–9.

    Article  CAS  PubMed  Google Scholar 

  97. Kukull WA, Ganguli M. Generalizability: the trees, the forest, and the low-hanging fruit. Neurology. 2012;78:1886–91.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu C, Li C. C-reactive protein and cardiovascular diseases: a synthesis of studies based on different designs. Eur J Prev Cardiol. 2023;30:1593–6.

    Article  PubMed  Google Scholar 

  99. Barnes LL, Capuano AW, Aiello AE, Turner AD, Yolken RH, Torrey EF, et al. Cytomegalovirus infection and risk of Alzheimer disease in older black and white individuals. J Infect Dis. 2015;211:230–7.

    Article  CAS  PubMed  Google Scholar 

  100. Harris SA, Harris EA. Herpes simplex virus type 1 and other pathogens are key causative factors in sporadic Alzheimer’s disease. J Alzheimers Dis. 2015;48:319–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Itzhaki RF. Herpes and Alzheimer’s Disease: Subversion in the central nervous system and how it might be halted. J Alzheimers Dis. 2016;54:1273–81.

    Article  CAS  PubMed  Google Scholar 

  102. Itzhaki RF, Cosby SL, Wozniak MA. Herpes simplex virus type 1 and Alzheimer’s Disease: the autophagy connection. J Neurovirol. 2008;14:1–4.

    Article  CAS  PubMed  Google Scholar 

  103. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375:296–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CL was supported by NIA R01AG070953 and R01AG075719; GAN was supported by NIA R00AG062749 and R01AG075719; RCS and was supported by NIA R01AG075719; AEA was supported by NIA R01AG075719.

Author information

Authors and Affiliations

Authors

Contributions

RCS, GAN, and AEA initiated the study. CL and CL were responsible for study design, data collection, analysis, and visualization. CL, RCS, GAN, and AEA interpreted the study findings. CL, RCS, and GAN wrote the first draft of the manuscript. AEA revised the manuscript. All authors have read, revised, and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chihua Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Stebbins, R.C., Noppert, G.A. et al. Peripheral immune function and Alzheimer’s disease: a living systematic review and critical appraisal. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02355-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02355-x

Search

Quick links