Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Preventing incubation of drug craving to treat drug relapse: from bench to bedside

Abstract

In 1986, Gawin and Kleber reported a progressive increase in cue-induced drug craving in individuals with cocaine use disorders during prolonged abstinence. After years of controversy, as of 2001, this phenomenon was confirmed in rodent studies using self-administration model, and defined as the incubation of drug craving. The intensification of cue-induced drug craving after withdrawal exposes abstinent individuals to a high risk of relapse, which urged us to develop effective interventions to prevent incubated craving. Substantial achievements have been made in deciphering the neural mechanisms, with potential implications for reducing drug craving and preventing the relapse. The present review discusses promising drug targets that have been well investigated in animal studies, including some neurotransmitters, neuropeptides, neurotrophic factors, and epigenetic markers. We also discuss translational exploitation and challenges in the field of the incubation of drug craving, providing insights into future investigations and highlighting the potential of pharmacological interventions, environment-based interventions, and neuromodulation techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Promising drug agents for preventing the incubation of drug craving.
Fig. 2: Incubation of drug craving in humans.

Similar content being viewed by others

References

  1. Brandon TH, Vidrine JI, Litvin EB. Relapse and relapse prevention. Annu Rev Clin Psychol. 2007;3:257–84.

    Article  PubMed  Google Scholar 

  2. Volkow ND, Boyle M. Neuroscience of addiction: Relevance to prevention and treatment. Am J Psychiatry. 2018;175:729–40.

    Article  PubMed  Google Scholar 

  3. Ahmed SH, Badiani A, Miczek KA, Muller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev. 2020;110:3–27.

    Article  CAS  PubMed  Google Scholar 

  4. Ruisoto P, Contador I. The role of stress in drug addiction. An integrative review. Physiol Behav. 2019;202:62–8.

    Article  CAS  PubMed  Google Scholar 

  5. O’Brien CP, Childress AR, McLellan AT, Ehrman R. Classical conditioning in drug-dependent humans. Ann N. Y Acad Sci. 1992;654:400–15.

    Article  PubMed  Google Scholar 

  6. George O, Koob GF. Control of craving by the prefrontal cortex. Proc Natl Acad Sci USA. 2013;110:4165–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sayette MA. The role of craving in substance use disorders: theoretical and methodological issues. Annu Rev Clin Psychol. 2016;12:407–33.

    Article  PubMed  Google Scholar 

  8. Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Arch Gen Psychiatry. 1986;43:107–13.

    Article  CAS  PubMed  Google Scholar 

  9. Grimm JW, Hope BT, Wise RA, Shaham Y. Incubation of cocaine craving after withdrawal. Nature. 2001;412:141–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shalev U, Morales M, Hope B, Yap J, Shaham Y. Time-dependent changes in extinction behavior and stress-induced reinstatement of drug seeking following withdrawal from heroin in rats. Psychopharmacology. 2001;156:98–107.

    Article  CAS  PubMed  Google Scholar 

  11. Neisewander JL, Baker DA, Fuchs RA, Tran-Nguyen LT, Palmer A, Marshall JF. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J Neurosci. 2000;20:798–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Parvaz MA, Moeller SJ, Goldstein RZ. Incubation of cue-induced craving in adults addicted to cocaine measured by electroencephalography. JAMA Psychiatry. 2016;73:1127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nicolas C, Russell TI, Pierce AF, Maldera S, Holley A, You ZB, et al. Incubation of cocaine craving after intermittent-access self-administration: sex differences and estrous cycle. Biol Psychiatry. 2019;85:915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nugent AL, Anderson EM, Larson EB, Self DW. Incubation of cue-induced reinstatement of cocaine, but not sucrose, seeking in C57BL/6J mice. Pharm Biochem Behav. 2017;159:12–7.

    Article  CAS  Google Scholar 

  15. Lubbers BR, Matos MR, Horn A, Visser E, Van der Loo RC, Gouwenberg Y, et al. The extracellular matrix protein brevican limits time-dependent enhancement of cocaine conditioned place preference. Neuropsychopharmacology. 2016;41:1907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bedi G, Preston KL, Epstein DH, Heishman SJ, Marrone GF, Shaham Y, et al. Incubation of cue-induced cigarette craving during abstinence in human smokers. Biol Psychiatry. 2011;69:708–11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li P, Wu P, Xin X, Fan YL, Wang GB, Wang F, et al. Incubation of alcohol craving during abstinence in patients with alcohol dependence. Addict Biol. 2015;20:513–22.

    Article  PubMed  Google Scholar 

  18. Koskela M, Piepponen TP, Andressoo JO, Võikar V, Airavaara M. Towards developing a model to study alcohol drinking and craving in female mice housed in automated cages. Behav Brain Res. 2018;352:116–24.

    Article  PubMed  Google Scholar 

  19. Treloar Padovano H, Miranda R Jr. Incubation of alcohol craving as it naturally occurs in a developmentally diverse sample of dependent and nondependent drinkers. Addict Biol. 2021;26:e12934.

    Article  PubMed  Google Scholar 

  20. Venniro M, Russell TI, Zhang M, Shaham Y. Operant social reward decreases incubation of heroin craving in male and female rats. Biol Psychiatry. 2019;86:848–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Airavaara M, Pickens CL, Stern AL, Wihbey KA, Harvey BK, Bossert JM, et al. Endogenous GDNF in ventral tegmental area and nucleus accumbens does not play a role in the incubation of heroin craving. Addict Biol. 2011;16:261–72.

    Article  CAS  PubMed  Google Scholar 

  22. Li YQ, Li FQ, Wang XY, Wu P, Zhao M, Xu CM, et al. Central amygdala extracellular signal-regulated kinase signaling pathway is critical to incubation of opiate craving. J Neurosci. 2008;28:13248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang G, Shi J, Chen N, Xu L, Li J, Li P, et al. Effects of length of abstinence on decision-making and craving in methamphetamine abusers. PLoS One. 2013;8:68791–6.

    Article  Google Scholar 

  24. Zhao D, Zhang M, Tian W, Cao X, Yin L, Liu Y, et al. Neurophysiological correlate of incubation of craving in individuals with methamphetamine use disorder. Mol Psychiatry. 2021;26:6198–208.

    Article  CAS  PubMed  Google Scholar 

  25. Fredriksson I, Tsai PJ, Shekara A, Duan Y, Applebey SV, Lu H, et al. Orbitofrontal cortex and dorsal striatum functional connectivity predicts incubation of opioid craving after voluntary abstinence. Proc Natl Acad Sci USA. 2021;118:e2106624118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gyawali U, Martin DA, Sulima A, Rice KC, Calu DJ. Role of BNST CRFR1 receptors in incubation of fentanyl seeking. Front Behav Neurosci. 2020;14:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. Neurobiology of the incubation of drug craving. Trends Neurosci. 2011;34:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li X, Caprioli D, Marchant NJ. Recent updates on incubation of drug craving: a mini-review. Addict Biol. 2015;20:872–6.

    Article  PubMed  Google Scholar 

  29. Altshuler RD, Lin H, Li X. Neural mechanisms underlying incubation of methamphetamine craving: a mini-review. Pharm Biochem Behav. 2020;199:173058–71.

    Article  CAS  Google Scholar 

  30. Venniro M, Reverte I, Ramsey LA, Papastrat KM, D’Ottavio G, Milella MS, et al. Factors modulating the incubation of drug and non-drug craving and their clinical implications. Neurosci Biobehav Rev. 2021;131:847–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10:561–72.

    Article  CAS  PubMed  Google Scholar 

  32. Shin CB, Serchia MM, Shahin JR, Ruppert-Majer MA, Kippin TE, Szumlinski KK. Incubation of cocaine-craving relates to glutamate over-flow within ventromedial prefrontal cortex. Neuropharmacology. 2016;102:103–10.

    Article  CAS  PubMed  Google Scholar 

  33. Shin CB, Templeton TJ, Chiu AS, Kim J, Gable ES, Vieira PA, et al. Endogenous glutamate within the prelimbic and infralimbic cortices regulates the incubation of cocaine-seeking in rats. Neuropharmacology. 2018;128:293–300.

    Article  CAS  PubMed  Google Scholar 

  34. Lu L, Uejima JL, Gray SM, Bossert JM, Shaham Y. Systemic and central amygdala injections of the mGluR(2/3) agonist LY379268 attenuate the expression of incubation of cocaine craving. Biol Psychiatry. 2007;61:591–8.

    Article  CAS  PubMed  Google Scholar 

  35. Wolf ME, Tseng KY. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how, and why? Front Mol Neurosci. 2012;5:72–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong Y, Taylor JR, Wolf ME, Shaham Y. Circuit and synaptic plasticity mechanisms of drug relapse. J Neurosci. 2017;37:10867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pomierny-Chamiolo L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharm Ther. 2014;142:281–305.

    Article  CAS  Google Scholar 

  38. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature. 2008;454:118–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrario CR, Loweth JA, Milovanovic M, Ford KA, Galiñanes GL, Heng LJ, et al. Alterations in AMPA receptor subunits and TARPs in the rat nucleus accumbens related to the formation of Ca2+-permeable AMPA receptors during the incubation of cocaine craving. Neuropharmacology. 2011;61:1141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee BR, Ma YY, Huang YH, Wang X, Otaka M, Ishikawa M, et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci. 2013;16:1644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma YY, Lee BR, Wang X, Guo C, Liu L, Cui R, et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron. 2014;83:1453–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scheyer AF, Loweth JA, Christian DT, Uejima J, Rabei R, Le T, et al. AMPA receptor plasticity in accumbens core contributes to incubation of methamphetamine craving. Biol Psychiatry. 2016;80:661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Faccidomo S, Cogan ES, Hon OJ, Hoffman JL, Saunders BL, Eastman VR, et al. Calcium-permeable AMPA receptor activity and GluA1 trafficking in the basolateral amygdala regulate operant alcohol self-administration. Addict Biol. 2021;26:e13049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liechti ME, Lhuillier L, Kaupmann K, Markou A. Metabotropic glutamate 2/3 receptors in the ventral tegmental area and the nucleus accumbens shell are involved in behaviors relating to nicotine dependence. J Neurosci. 2007;27:9077–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schoepp DD. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharm Exp Ther. 2001;299:12–20.

    CAS  Google Scholar 

  46. Caprioli D, Justinova Z, Venniro M, Shaham Y. Effect of novel allosteric modulators of metabotropic glutamate receptors on drug self-administration and relapse: a review of preclinical studies and their clinical implications. Biol Psychiatry. 2018;84:180–92.

    Article  CAS  PubMed  Google Scholar 

  47. Conn PJ, Christopoulos A, Lindsley CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Disco. 2009;8:41–54.

    Article  CAS  Google Scholar 

  48. Conn PJ, Lindsley CW, Meiler J, Niswender CM. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Disco. 2014;13:692–708.

    Article  CAS  Google Scholar 

  49. Loweth JA, Scheyer AF, Milovanovic M, LaCrosse AL, Flores-Barrera E, Werner CT, et al. Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nat Neurosci. 2014;17:73–80.

    Article  CAS  PubMed  Google Scholar 

  50. Caprioli D, Venniro M, Zeric T, Li X, Adhikary S, Madangopal R, et al. Effect of the novel positive allosteric modulator of metabotropic glutamate receptor 2 AZD8529 on incubation of methamphetamine craving after prolonged voluntary abstinence in a rat model. Biol Psychiatry. 2015;78:463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Volkow ND, Wise RA, Baler R. The dopamine motive system: Implications for drug and food addiction. Nat Rev Neurosci. 2017;18:741–52.

    Article  CAS  PubMed  Google Scholar 

  52. Grimm JW, Shaham Y, Hope BT. Effect of cocaine and sucrose withdrawal period on extinction behavior, cue-induced reinstatement, and protein levels of the dopamine transporter and tyrosine hydroxylase in limbic and cortical areas in rats. Behav Pharm. 2002;13:379–88.

    Article  CAS  Google Scholar 

  53. Alonso IP, O’Connor BM, Bryant KG, Mandalaywala RK, Espana RA. Incubation of cocaine craving coincides with changes in dopamine terminal neurotransmission. Addict Neurosci. 2022;3:100029.

  54. Rossi LM, Reverte I, Ragozzino D, Badiani A, Venniro M, Caprioli D. Role of nucleus accumbens core but not shell in incubation of methamphetamine craving after voluntary abstinence. Neuropsychopharmacology. 2020;45:256–65.

    Article  CAS  PubMed  Google Scholar 

  55. Xi ZX, Li X, Li J, Peng XQ, Song R, Gaál J, et al. Blockade of dopamine D3 receptors in the nucleus accumbens and central amygdala inhibits incubation of cocaine craving in rats. Addict Biol. 2013;18:665–77.

    Article  CAS  PubMed  Google Scholar 

  56. Grimm JW, Harkness JH, Ratliff C, Barnes J, North K, Collins S. Effects of systemic or nucleus accumbens-directed dopamine D1 receptor antagonism on sucrose seeking in rats. Psychopharmacol (Berl). 2011;216:219–33.

    Article  CAS  Google Scholar 

  57. Le Merrer J, Becker JA, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89:1379–412.

    Article  PubMed  Google Scholar 

  58. Dikshtein Y, Barnea R, Kronfeld N, Lax E, Roth-Deri I, Friedman A, et al. β-endorphin via the delta opioid receptor is a major factor in the incubation of cocaine craving. Neuropsychopharmacology. 2013;38:2508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bailey CP, Husbands SM. Novel approaches for the treatment of psychostimulant and opioid abuse - focus on opioid receptor-based therapies. Expert Opin Drug Disco. 2014;9:1333–44.

    Article  CAS  Google Scholar 

  60. Theberge FR, Li X, Kambhampati S, Pickens CL, St Laurent R, Bossert JM, et al. Effect of chronic delivery of the Toll-like receptor 4 antagonist (+)-naltrexone on incubation of heroin craving. Biol Psychiatry. 2013;73:729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Theberge FR, Pickens CL, Goldart E, Fanous S, Hope BT, Liu QR, et al. Association of time-dependent changes in mu opioid receptor mRNA, but not BDNF, TrkB, or MeCP2 mRNA and protein expression in the rat nucleus accumbens with incubation of heroin craving. Psychopharmacol (Berl). 2012;224:559–71.

    Article  CAS  Google Scholar 

  62. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437:556–9.

    Article  CAS  PubMed  Google Scholar 

  63. DiLeone RJ, Georgescu D, Nestler EJ. Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci. 2003;73:759–68.

    Article  CAS  PubMed  Google Scholar 

  64. James MH, Stopper CM, Zimmer BA, Koll NE, Bowrey HE, Aston-Jones G. Increased number and activity of a lateral subpopulation of hypothalamic orexin/hypocretin neurons underlies the expression of an addicted state in rats. Biol Psychiatry. 2019;85:925–35.

    Article  CAS  PubMed  Google Scholar 

  65. Steiner N, Rossetti C, Sakurai T, Yanagisawa M, de Lecea L, Magistretti PJ, et al. Hypocretin/orexin deficiency decreases cocaine abuse liability. Neuropharmacology. 2018;133:395–403.

    Article  CAS  PubMed  Google Scholar 

  66. Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Disco. 2011;10:209–19.

    Article  CAS  Google Scholar 

  67. Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell. 2022;185:62–76.

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt HD, Sangrey GR, Darnell SB, Schassburger RL, Cha JH, Pierce RC, et al. Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters. J Neurochem. 2012;120:202–9.

    Article  CAS  PubMed  Google Scholar 

  69. Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci. 2003;23:742–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li X, DeJoseph MR, Urban JH, Bahi A, Dreyer JL, Meredith GE, et al. Different roles of BDNF in nucleus accumbens core versus shell during the incubation of cue-induced cocaine craving and its long-term maintenance. J Neurosci. 2013;33:1130–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuntz-Melcavage KL, Brucklacher RM, Grigson PS, Freeman WM, Vrana KE. Gene expression changes following extinction testing in a heroin behavioral incubation model. BMC Neurosci. 2009;10:95.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci. 2005;8:212–9.

    Article  CAS  PubMed  Google Scholar 

  73. Lu L, Wang X, Wu P, Xu C, Zhao M, Morales M, et al. Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol Psychiatry. 2009;66:137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Szumlinski KK, Ary AW, Shin CB, Wroten MG, Courson J, Miller BW, et al. PI3K activation within ventromedial prefrontal cortex regulates the expression of drug-seeking in two rodent species. Addict Biol. 2019;24:1216–26.

    Article  CAS  PubMed  Google Scholar 

  75. Chiu AS, Kang MC, Huerta Sanchez LL, Fabella AM, Holder KN, Barger BD, et al. Preclinical evidence to support repurposing everolimus for craving reduction during protracted drug withdrawal. Neuropsychopharmacology. 2021;46:2090–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12:623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nielsen DA, Huang W, Hamon SC, Maili L, Witkin BM, Fox RG, et al. Forced abstinence from cocaine self-administration is associated with DNA methylation changes in myelin genes in the corpus callosum: a preliminary study. Front Psychiatry. 2012;3:60–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Massart R, Barnea R, Dikshtein Y, Suderman M, Meir O, Hallett M, et al. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving. J Neurosci. 2015;35:8042–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron. 2008;60:961–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li X, Carreria MB, Witonsky KR, Zeric T, Lofaro OM, Bossert JM, et al. Role of dorsal striatum histone deacetylase 5 in incubation of methamphetamine craving. Biol Psychiatry. 2018;84:213–22.

    Article  CAS  PubMed  Google Scholar 

  81. Wang GB, Zhang XL, Zhao LY, Sun LL, Wu P, Lu L, et al. Drug-related cues exacerbate decision making and increase craving in heroin addicts at different abstinence times. Psychopharmacol (Berl). 2012;221:701–8.

    Article  CAS  Google Scholar 

  82. Moeller SJ, Goldstein RZ. Impaired self-awareness in human addiction: deficient attribution of personal relevance. Trends Cogn Sci. 2014;18:635–41.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Crowne DP, Marlowe D. A new scale of social desirability independent of psychopathology. J Consult Psychol. 1960;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  84. Hajcak G, MacNamara A, Foti D, Ferri J, Keil A. The dynamic allocation of attention to emotion: Simultaneous and independent evidence from the late positive potential and steady state visual evoked potentials. Biol Psychol. 2013;92:447–55.

    Article  PubMed  Google Scholar 

  85. Hajcak G, Olvet DM. The persistence of attention to emotion: Brain potentials during and after picture presentation. Emotion 2008;8:250–5.

    Article  PubMed  Google Scholar 

  86. Franken IH, Dietvorst RC, Hesselmans M, Franzek EJ, van de Wetering BJ, Van Strien JW. Cocaine craving is associated with electrophysiological brain responses to cocaine-related stimuli. Addict Biol. 2008;13:386–92.

    Article  PubMed  Google Scholar 

  87. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162:1403–13.

    Article  PubMed  Google Scholar 

  88. Chen B, Wang Y, Liu X, Liu Z, Dong Y, Huang YH. Sleep regulates incubation of cocaine craving. J Neurosci. 2015;35:13300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chauvet C, Goldberg SR, Jaber M, Solinas M. Effects of environmental enrichment on the incubation of cocaine craving. Neuropharmacology. 2012;63:635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zlebnik NE, Carroll ME. Prevention of the incubation of cocaine seeking by aerobic exercise in female rats. Psychopharmacol (Berl). 2015;232:3507–13.

    Article  CAS  Google Scholar 

  91. Sanchez V, Bakhti-Suroosh A, Chen A, Brunzell DH, Erisir A, Lynch WJ. Exercise during abstinence normalizes ultrastructural synaptic plasticity associated with nicotine-seeking following extended access self-administration. Eur J Neurosci. 2019;50:2707–21.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Venniro M, Zhang M, Shaham Y, Caprioli D. Incubation of methamphetamine but not heroin craving after voluntary abstinence in male and female rats. Neuropsychopharmacology. 2017;42:1126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. D’Ottavio G, Reverte I, Ragozzino D, Meringolo M, Milella MS, Boix F, et al. Increased heroin intake and relapse vulnerability in intermittent relative to continuous self-administration: Sex differences in rats. Br J Pharmacol. 2022; https://doi.org/10.1111/bph.15791.

  94. Krasnova IN, Marchant NJ, Ladenheim B, McCoy MT, Panlilio LV, Bossert JM, et al. Incubation of methamphetamine and palatable food craving after punishment-induced abstinence. Neuropsychopharmacology. 2014;39:2008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Madsen HB, Zbukvic IC, Luikinga SJ, Lawrence AJ, Kim JH. Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats. Neurobiol Learn Mem. 2017;143:88–93.

    Article  CAS  PubMed  Google Scholar 

  96. Heilig M, Epstein DH, Nader MA, Shaham Y. Time to connect: Bringing social context into addiction neuroscience. Nat Rev Neurosci. 2016;17:592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bach P, Weil G, Pompili E, Hoffmann S, Hermann D, Vollstädt-Klein S, et al. Incubation of neural alcohol cue reactivity after withdrawal and its blockade by naltrexone. Addict Biol. 2020;25:12717–27.

    Article  Google Scholar 

  98. Loeber S, Kiefer F, Wagner F, Mann K, Croissant B. Treatment outcome after inpatient alcohol withdrawal: Impact of motivational interventions: a comparative study. Nervenarzt. 2009;80:1085–92.

    Article  CAS  PubMed  Google Scholar 

  99. Narayanaswami V, Dwoskin LP. Obesity: current and potential pharmacotherapeutics and targets. Pharm Ther. 2017;170:116–47.

    Article  CAS  Google Scholar 

  100. Epstein AM, King AC. Naltrexone attenuates acute cigarette smoking behavior. Pharm Biochem Behav. 2004;77:29–37.

    Article  CAS  Google Scholar 

  101. Volpicelli JR, Alterman AI, Hayashida M, O’Brien CP. Naltrexone in the treatment of alcohol dependence. Arch Gen Psychiatry. 1992;49:876–80.

    Article  CAS  PubMed  Google Scholar 

  102. Croop RS, Faulkner EB, Labriola DF. The safety profile of naltrexone in the treatment of alcoholism. Results from a multicenter usage study. The naltrexone usage study group. Arch Gen Psychiatry. 1997;54:1130–5.

    Article  CAS  PubMed  Google Scholar 

  103. Anton RF, O’Malley SS, Ciraulo DA, Cisler RA, Couper D, Donovan DM, et al. Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial. JAMA. 2006;295:2003–17.

    Article  CAS  PubMed  Google Scholar 

  104. Chauvet C, Lardeux V, Goldberg SR, Jaber M, Solinas M. Environmental enrichment reduces cocaine seeking and reinstatement induced by cues and stress but not by cocaine. Neuropsychopharmacology. 2009;34:2767–78.

    Article  PubMed  Google Scholar 

  105. Solinas M, Chauvet C, Thiriet N, El Rawas R, Jaber M. Reversal of cocaine addiction by environmental enrichment. Proc Natl Acad Sci USA. 2008;105:17145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fredriksson I, Applebey SV, Minier-Toribio A, Shekara A, Bossert JM, Shaham Y. Effect of the dopamine stabilizer (-)-OSU6162 on potentiated incubation of opioid craving after electric barrier-induced voluntary abstinence. Neuropsychopharmacology. 2020;45:770–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Caprioli D, Venniro M, Zhang M, Bossert JM, Warren BL, Hope BT, et al. Role of dorsomedial striatum neuronal wnsembles in incubation of methamphetamine craving after voluntary abstinence. J Neurosci. 2017;37:1014–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Weiss G. Food fantasies of incarcerated drug users. Int J Addict. 1982;17:905–12.

    Article  CAS  PubMed  Google Scholar 

  109. Zador D, Lyons Wall PM, Webster I. High sugar intake in a group of women on methadone maintenance in south western Sydney, Australia. Addiction. 1996;91:1053–61.

    Article  CAS  PubMed  Google Scholar 

  110. Neale J, Nettleton S, Pickering L, Fischer J. Eating patterns among heroin users: a qualitative study with implications for nutritional interventions. Addiction. 2012;107:635–41.

    Article  PubMed  Google Scholar 

  111. Venniro M, Shaham Y. An operant social self-administration and choice model in rats. Nat Protoc. 2020;15:1542–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Venniro M, Zhang M, Caprioli D, Hoots JK, Golden SA, Heins C, et al. Volitional social interaction prevents drug addiction in rat models. Nat Neurosci. 2018;21:1520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Venniro M, Russell TI, Ramsey LA, Richie CT, Lesscher HMB, Giovanetti SM, et al. Abstinence-dependent dissociable central amygdala microcircuits control drug craving. Proc Natl Acad Sci USA. 2020;117:8126–34.

  114. Smith JE, Meyers RJ, Miller WR. The community reinforcement approach to the treatment of substance use disorders. Am J Addictions. 2001;10:51–9.

    Article  Google Scholar 

  115. Meyers RJ, Roozen HG, Smith JE. The community reinforcement approach: an update of the evidence. Alcohol Res Health. 2011;33:380–8.

    PubMed  PubMed Central  Google Scholar 

  116. De Jong CA, Roozen HG, van Rossum LG, Krabbe PF, Kerkhof AJ. High abstinence rates in heroin addicts by a new comprehensive treatment approach. Am J Addict. 2007;16:124–30.

    Article  PubMed  Google Scholar 

  117. Won SM, Song E, Reeder JT, Rogers JA. Emerging modalities and implantable technologies for neuromodulation. Cell. 2020;181:115–35.

    Article  CAS  PubMed  Google Scholar 

  118. Chase HW, Boudewyn MA, Carter CS, Phillips ML. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Mol Psychiatry. 2020;25:397–407.

    Article  PubMed  Google Scholar 

  119. Diana M, Raij T, Melis M, Nummenmaa A, Leggio L, Bonci A. Rehabilitating the addicted brain with transcranial magnetic stimulation. Nat Rev Neurosci. 2017;18:685–93.

    Article  CAS  PubMed  Google Scholar 

  120. Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2021;17:75–87.

    Article  PubMed  Google Scholar 

  121. Habelt B, Arvaneh M, Bernhardt N, Minev I. Biomarkers and neuromodulation techniques in substance use disorders. Bioelectron Med. 2020;6:4–20.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Spagnolo PA, Goldman D. Neuromodulation interventions for addictive disorders: Challenges, promise, and roadmap for future research. Brain. 2017;140:1183–203.

    PubMed  Google Scholar 

  123. Alizadehgoradel J, Nejati V, Sadeghi Movahed F, Imani S, Taherifard M, Mosayebi-Samani M, et al. Repeated stimulation of the dorsolateral-prefrontal cortex improves executive dysfunctions and craving in drug addiction: a randomized, double-blind, parallel-group study. Brain Stimul. 2020;13:582–93.

    Article  PubMed  Google Scholar 

  124. Su H, Zhong N, Gan H, Wang JJ, Han H, Chen TZ, et al. High frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex for methamphetamine use disorders: a randomised clinical trial. Drug Alcohol Depend. 2017;175:84–91.

    Article  CAS  PubMed  Google Scholar 

  125. Zangen A, Moshe H, Martinez D, Barnea-Ygael N, Vapnik T, Bystritsky A, et al. Repetitive transcranial magnetic stimulation for smoking cessation: a pivotal multicenter double-blind randomized controlled trial. World Psychiatry. 2021;20:397–404.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Xue YX, Luo YX, Wu P, Shi HS, Xue LF, Chen C, et al. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science. 2012;336:241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xue YX, Deng JH, Chen YY, Zhang LB, Wu P, Huang GD, et al. Effect of selective inhibition of reactivated nicotine-associated memories with propranolol on nicotine craving. JAMA Psychiatry. 2017;74:224–32.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Beisteiner R, Matt E, Fan C, Baldysiak H, Schonfeld M, Philippi Novak T, et al. Transcranial pulse stimulation with ultrasound in Alzheimer’s disease-A new navigated focal brain therapy. Adv Sci (Weinh). 2020;7:1902583.

    Article  PubMed  Google Scholar 

  129. Provenza NR, Sheth SA, Dastin-van Rijn EM, Mathura RK, Ding Y, Vogt GS, et al. Long-term ecological assessment of intracranial electrophysiology synchronized to behavioral markers in obsessive-compulsive disorder. Nat Med. 2021;27:2154–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98.

    Article  CAS  PubMed  Google Scholar 

  131. Sinha R. New findings on biological factors predicting addiction relapse vulnerability. Curr Psychiatry Rep. 2011;13:398–405.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nicolas C, Zlebnik NE, Farokhnia M, Leggio L, Ikemoto S, Shaham Y. Sex differences in opioid and psychostimulant craving and relapse: a critical review. Pharmacol Rev. 2022;74:119–40.

    Article  CAS  PubMed  Google Scholar 

  133. Kerstetter KA, Aguilar VR, Parrish AB, Kippin TE. Protracted time-dependent increases in cocaine-seeking behavior during cocaine withdrawal in female relative to male rats. Psychopharmacol (Berl). 2008;198:63–75.

    Article  CAS  Google Scholar 

  134. Corbett CM, Dunn E, Loweth JA. Effects of sex and estrous cycle on the time course of incubation of cue-induced craving following extended-access cocaine self-administration. eNeuro. 2021;8:ENEURO.0054–21.2021.

  135. Johnson AR, Thibeault KC, Lopez AJ, Peck EG, Sands LP, Sanders CM, et al. Cues play a critical role in estrous cycle-dependent enhancement of cocaine reinforcement. Neuropsychopharmacology. 2019;44:1189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Creed M. Current and emerging neuromodulation therapies for addiction: Insight from pre-clinical studies. Curr Opin Neurobiol. 2018;49:168–74.

    Article  CAS  PubMed  Google Scholar 

  137. Liu X, Zhao X, Liu T, Liu Q, Tang L, Zhang H, et al. The effects of repetitive transcranial magnetic stimulation on cue-induced craving in male patients with heroin use disorder. EBioMedicine. 2020;56:102809–15.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ceccanti M, Inghilleri M, Attilia ML, Raccah R, Fiore M, Zangen A, et al. Deep TMS on alcoholics: effects on cortisolemia and dopamine pathway modulation. A pilot study. Can J Physiol Pharm. 2015;93:283–90.

    Article  CAS  Google Scholar 

  139. Li X, Hartwell KJ, Henderson S, Badran BW, Brady KT, George MS. Two weeks of image-guided left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation improves smoking cessation: a double-blind, sham-controlled, randomized clinical trial. Brain Stimul. 2020;13:1271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yuan J, Liu W, Liang Q, Cao X, Lucas MV, Yuan TF. Effect of low-frequency repetitive transcranial magnetic stimulation on impulse inhibition in abstinent patients with methamphetamine addiction: a randomized clinical trial. JAMA Netw Open. 2020;3:e200910.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Garza-Villarreal EA, Alcala-Lozano R, Fernandez-Lozano S, Morelos-Santana E, Dávalos A, Villicaña V, et al. Clinical and functional connectivity outcomes of 5-Hz repetitive transcranial magnetic stimulation as an add-on treatment in cocaine use disorder: a double-blind randomized controlled trial. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:745–57.

    PubMed  Google Scholar 

  142. Xu X, Ding X, Chen L, Chen T, Su H, Li X, et al. The transcranial direct current stimulation over prefrontal cortex combined with the cognitive training reduced the cue-induced craving in female individuals with methamphetamine use disorder: a randomized controlled trial. J Psychiatr Res. 2021;134:102–10.

    Article  PubMed  Google Scholar 

  143. Fasano A, Aquino CC, Krauss JK, Honey CR, Bloem BR. Axial disability and deep brain stimulation in patients with Parkinson disease. Nat Rev Neurol. 2015;11:98–110.

    Article  PubMed  Google Scholar 

  144. Oliveria SF, Rodriguez RL, Bowers D, Kantor D, Hilliard JD, Monari EH, et al. Safety and efficacy of dual-lead thalamic deep brain stimulation for patients with treatment-refractory multiple sclerosis tremor: a single-centre, randomised, single-blind, pilot trial. Lancet Neurol. 2017;16:691–700.

    Article  PubMed  Google Scholar 

  145. Vidailhet M, Yelnik J, Lagrange C, Fraix V, Grabli D, Thobois S, et al. Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: A prospective pilot study. Lancet Neurol. 2009;8:709–17.

    Article  PubMed  Google Scholar 

  146. Zhu R, Zhang Y, Wang T, Wei H, Zhang C, Li D, et al. Deep brain stimulation of nucleus accumbens with anterior capsulotomy for drug addiction: a case report. Stereotact Funct Neurosurg. 2020;98:345–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the STI2030-Major Projects (no. 2021ZD0200800), and PKU-Baidu Fund (no. 2020BD011). Images in Fig. 1 and Box 2 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

XXL wrote the draft manuscript. XXL, KY, and TSL constructed the figures and prepared the tables. XL, WZ, YXX, and JS revised the manuscript. LL and YH supervised this review and revised the manuscript. All authors contributed to the article and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lin Lu or Ying Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yuan, K., Lu, T. et al. Preventing incubation of drug craving to treat drug relapse: from bench to bedside. Mol Psychiatry 28, 1415–1429 (2023). https://doi.org/10.1038/s41380-023-01942-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-01942-2

Search

Quick links