Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KDM6B cooperates with Tau and regulates synaptic plasticity and cognition via inducing VGLUT1/2

Abstract

The excitatory neurotransmitter glutamate shapes learning and memory, but the underlying epigenetic mechanism of glutamate regulation in neuron remains poorly understood. Here, we showed that lysine demethylase KDM6B was expressed in excitatory neurons and declined in hippocampus with age. Conditional knockout of KDM6B in excitatory neurons reduced spine density, synaptic vesicle number and synaptic activity, and impaired learning and memory without obvious effect on brain morphology in mice. Mechanistically, KDM6B upregulated vesicular glutamate transporter 1 and 2 (VGLUT1/2) in neurons through demethylating H3K27me3 at their promoters. Tau interacted and recruited KDM6B to the promoters of Slc17a7 and Slc17a6, leading to a decrease in local H3K27me3 levels and induction of VGLUT1/2 expression in neurons, which could be prevented by loss of Tau. Ectopic expression of KDM6B, VGLUT1, or VGLUT2 restored spine density and synaptic activity in KDM6B-deficient cortical neurons. Collectively, these findings unravel a fundamental mechanism underlying epigenetic regulation of synaptic plasticity and cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KDM6B cKO mice display learning and memory-associated behavioral deficits.
Fig. 2: KDM6B cKO reduces synaptic activity and vesicle numbers in mice.
Fig. 3: Identification of VGLUT1 and VGLUT2 as KDM6B main target genes.
Fig. 4: KDM6B induces VGLUT1 and VGLUT2 expression through its H3K27me3 demethylase activity.
Fig. 5: KDM6B regulates synapse activity through VGLUT1/2 in neurons.
Fig. 6: VGLUT1 and VGLUT2 were mainly regulated by KDM6B, but not KDM6A or EZH1/2.
Fig. 7: Tau is a coregulator for KDM6B to control VGLUT1 and VGLUT2 expression.
Fig. 8: The proposed model for KDM6B function in regulation of synaptic activity and cognition.

Similar content being viewed by others

Data availability

The RNA-seq data were deposited at the GEO database with accession number GSE197117.

References

  1. Bienvenu T, Chelly J. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet. 2006;7:415–26.

    CAS  PubMed  Google Scholar 

  2. Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci. 2008;28:10576–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature. 2007;447:178–82.

    CAS  PubMed  Google Scholar 

  4. Nativio R, Donahue G, Berson A, Lan Y, Amlie-Wolf A, Tuzer F, et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neurosci. 2018;21:497–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Persico G, Casciaro F, Amatori S, Rusin M, Cantatore F, Perna A, et al. Histone H3 lysine 4 and 27 trimethylation landscape of human Alzheimer’s disease. Cells. 2022;11:734.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4.

    CAS  PubMed  Google Scholar 

  7. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA. 2007;104:18439–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell. 2007;130:1083–94.

    PubMed  Google Scholar 

  9. Iida A, Iwagawa T, Kuribayashi H, Satoh S, Mochizuki Y, Baba Y, et al. Histone demethylase Jmjd3 is required for the development of subsets of retinal bipolar cells. Proc Natl Acad Sci USA. 2014;111:3751–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Park DH, Hong SJ, Salinas RD, Liu SJ, Sun SW, Sgualdino J, et al. Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis. Cell Rep. 2014;8:1290–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Akizu N, Estaras C, Guerrero L, Marti E, Martinez-Balbas MA. H3K27me3 regulates BMP activity in developing spinal cord. Development. 2010;137:2915–25.

    CAS  PubMed  Google Scholar 

  12. Burgold T, Voituron N, Caganova M, Tripathi PP, Menuet C, Tusi BK, et al. The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep. 2012;2:1244–58.

    CAS  PubMed  Google Scholar 

  13. Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 2010;11:936–44.

    CAS  PubMed  Google Scholar 

  14. Lee JY, Na WH, Choi HY, Lee KH, Ju BG, Yune TY. Jmjd3 mediates blood-spinal cord barrier disruption after spinal cord injury by regulating MMP-3 and MMP-9 expressions. Neurobiol Dis. 2016;95:66–81.

    CAS  PubMed  Google Scholar 

  15. Zhang H, Wang J, Huang J, Shi T, Ma X, Luo X, et al. Inhibiting Jumoji domain containing protein 3 (JMJD3) prevent neuronal apoptosis from stroke. Exp Neurol. 2018;308:132–42.

    CAS  PubMed  Google Scholar 

  16. Stolerman ES, Francisco E, Stallworth JL, Jones JR, Monaghan KG, Keller-Ramey J, et al. Genetic variants in the KDM6B gene are associated with neurodevelopmental delays and dysmorphic features. Am J Med Genet A. 2019;179:1276–86.

    CAS  PubMed  Google Scholar 

  17. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    PubMed  PubMed Central  Google Scholar 

  18. Casanova E, Fehsenfeld S, Mantamadiotis T, Lemberger T, Greiner E, Stewart AF, et al. A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis. 2001;31:37–42.

    CAS  PubMed  Google Scholar 

  19. Dragatsis I, Zeitlin S. CaMKIIalpha-Cre transgene expression and recombination patterns in the mouse brain. Genesis. 2000;26:133–5.

    CAS  PubMed  Google Scholar 

  20. Dubois NC, Hofmann D, Kaloulis K, Bishop JM, Trumpp A. Nestin-Cre transgenic mouse line Nes-Cre1 mediates highly efficient Cre/loxP mediated recombination in the nervous system, kidney, and somite-derived tissues. Genesis. 2006;44:355–60.

    CAS  PubMed  Google Scholar 

  21. Kraeuter AK, Guest PC, Sarnyai Z. The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol. 2019;1916:105–11.

    CAS  PubMed  Google Scholar 

  22. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, et al. Object recognition test in mice. Nat Protoc. 2013;8:2531–7.

    CAS  PubMed  Google Scholar 

  23. Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci. 2001;24:897–931.

    CAS  PubMed  Google Scholar 

  24. Shih TW, Lee LJ, Chang HC, Lin HW, Chang MS. An important role of PHRF1 in dendritic architecture and memory formation by modulating TGF-beta signaling. Sci Rep. 2020;10:10857.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pchitskaya E, Bezprozvanny I. Dendritic spines shape analysis-classification or clusterization? perspective. Front Synaptic Neurosci. 2020;12:31.

    PubMed  PubMed Central  Google Scholar 

  26. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28:41–51.

    CAS  PubMed  Google Scholar 

  27. Alabi AA, Tsien RW. Synaptic vesicle pools and dynamics. Cold Spring Harb Perspect Biol. 2012;4:a013680.

    PubMed  PubMed Central  Google Scholar 

  28. Yau SY, Li A, So KF. Involvement of adult Hippocampal neurogenesis in learning and forgetting. Neural Plast. 2015;2015:717958.

    PubMed  PubMed Central  Google Scholar 

  29. Chen S, Ma J, Wu F, Xiong LJ, Ma H, Xu W, et al. The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes Dev. 2012;26:1364–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. von Schimmelmann M, Feinberg PA, Sullivan JM, Ku SM, Badimon A, Duff MK, et al. Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration. Nat Neurosci. 2016;19:1321–30.

    Google Scholar 

  31. Siano G, Varisco M, Caiazza MC, Quercioli V, Mainardi M, Ippolito C, et al. Tau Modulates VGluT1 Expression. J Mol Biol. 2019;431:873–84.

    CAS  PubMed  Google Scholar 

  32. Liu S, Zhou M, Ruan Z, Wang Y, Chang C, Sasaki M, et al. AIF3 splicing switch triggers neurodegeneration. Mol Neurodegener. 2021;16:25.

    PubMed  PubMed Central  Google Scholar 

  33. Fremeau RT Jr, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, et al. Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science. 2004;304:1815–9.

    CAS  PubMed  Google Scholar 

  34. Wojcik SM, Rhee JS, Herzog E, Sigler A, Jahn R, Takamori S, et al. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc Natl Acad Sci USA. 2004;101:7158–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. He H, Mahnke AH, Doyle S, Fan N, Wang CC, Hall BJ, et al. Neurodevelopmental role for VGLUT2 in pyramidal neuron plasticity, dendritic refinement, and in spatial learning. J Neurosci. 2012;32:15886–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Garcia-Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, et al. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry. 2009;66:275–82.

    CAS  PubMed  Google Scholar 

  37. Jiang W, Wang J, Zhang Y. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway. Cell Res. 2013;23:122–30.

    CAS  PubMed  Google Scholar 

  38. Das P, Taube JH. Regulating Methylation at H3K27: a trick or treat for cancer cell plasticity. Cancers (Basel). 2020;12:2792.

  39. Tang GB, Zeng YQ, Liu PP, Mi TW, Zhang SF, Dai SK, et al. The histone H3K27 demethylase UTX regulates synaptic plasticity and cognitive behaviors in mice. Front Mol Neurosci. 2017;10:267.

    PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Ji F, Liu Y, Lei X, Li H, Ji G, et al. Ezh2 regulates adult hippocampal neurogenesis and memory. J Neurosci. 2014;34:5184–99.

    PubMed  PubMed Central  Google Scholar 

  41. Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, et al. Role of Tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci. 2019;11:204.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lefebvre T, Ferreira S, Dupont-Wallois L, Bussiere T, Dupire MJ, Delacourte A, et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins—a role in nuclear localization. Biochim Biophys Acta. 2003;1619:167–76.

    CAS  PubMed  Google Scholar 

  43. Hua Q, He RQ. Effect of phosphorylation and aggregation on tau binding to DNA. Protein Pept Lett. 2002;9:349–57.

    CAS  PubMed  Google Scholar 

  44. Sjoberg MK, Shestakova E, Mansuroglu Z, Maccioni RB, Bonnefoy E. Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization. J Cell Sci. 2006;119:2025–34.

    CAS  PubMed  Google Scholar 

  45. Maina MB, Bailey LJ, Wagih S, Biasetti L, Pollack SJ, Quinn JP, et al. The involvement of tau in nucleolar transcription and the stress response. Acta Neuropathol Commun. 2018;6:70.

    PubMed  PubMed Central  Google Scholar 

  46. Mansuroglu Z, Benhelli-Mokrani H, Marcato V, Sultan A, Violet M, Chauderlier A, et al. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci Rep. 2016;6:33047.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12:15–27.

    CAS  PubMed  Google Scholar 

  48. Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carlomagno Y, et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron. 2018;99:925–40.e927

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kashani A, Lepicard E, Poirel O, Videau C, David JP, Fallet-Bianco C, et al. Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging. 2008;29:1619–30.

    CAS  PubMed  Google Scholar 

  50. Jung HY, Yoo DY, Park JH, Kim JW, Chung JY, Kim DW, et al. Age-dependent changes in vesicular glutamate transporter 1 and 2 expression in the gerbil hippocampus. Mol Med Rep. 2018;17:6465–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Woo-Ping Ge and Kimberly Huber for advice on eletrophysology studies, Dr. Stuart H. Orkin at Harvard Medical School for providing Kdm6bfl/fl mice, and UT Southwestern core facilities including electron microscopy core, rodent behavior core, and live cell imaging core for experimental assistance (1P30 CA142543-01).

Funding

This work was supported by grants from the NIH (R35GM124693, R00NS078049, and R01AG066166) to YW.

Author information

Authors and Affiliations

Authors

Contributions

YNW and YW conceived and designed experiments and wrote the manuscript. YNW performed and analyzed most experiments. NK and JRG performed electrophysiological recordings and data analysis. SL helped perform some behavioral tests. MZ and LB helped experimental optimization and data interpretation. JEW assisted in breeding and genotyping of KDM6B cKO mice.

Corresponding author

Correspondence to Yingfei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Khandelwal, N., Liu, S. et al. KDM6B cooperates with Tau and regulates synaptic plasticity and cognition via inducing VGLUT1/2. Mol Psychiatry 27, 5213–5226 (2022). https://doi.org/10.1038/s41380-022-01750-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01750-0

This article is cited by

Search

Quick links