Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blood miR-144-3p: a novel diagnostic and therapeutic tool for depression

Abstract

Major depressive disorder (MDD) is the leading cause of disability worldwide. There is an urgent need for objective biomarkers to diagnose this highly heterogeneous syndrome, assign treatment, and evaluate treatment response and prognosis. MicroRNAs (miRNAs) are short non-coding RNAs, which are detected in body fluids that have emerged as potential biomarkers of many disease conditions. The present study explored the potential use of miRNAs as biomarkers for MDD and its treatment. We profiled the expression levels of circulating blood miRNAs from mice that were collected before and after exposure to chronic social defeat stress (CSDS), an extensively validated mouse model used to study depression, as well as after either repeated imipramine or single-dose ketamine treatment. We observed robust differences in blood miRNA signatures between stress-resilient and stress-susceptible mice after an incubation period, but not immediately after exposure to the stress. Furthermore, ketamine treatment was more effective than imipramine at re-establishing baseline miRNA expression levels, but only in mice that responded behaviorally to the drug. We identified the red blood cell-specific miR-144-3p as a candidate biomarker to aid depression diagnosis and predict ketamine treatment response in stress-susceptible mice and MDD patients. Lastly, we demonstrate that systemic knockdown of miR-144-3p, via subcutaneous administration of a specific antagomir, is sufficient to reduce the depression-related phenotype in stress-susceptible mice. RNA-sequencing analysis of blood after such miR-144-3p knockdown revealed a blunted transcriptional stress signature as well. These findings identify miR-144-3p as a novel target for diagnosis of MDD as well as for antidepressant treatment, and enhance our understanding of epigenetic processes associated with depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic outline of experimental design.
Fig. 2: Characterization of circulating miRNAs in ketamine-treated susceptible mice.
Fig. 3: Circulating miR-144-3p levels predict ketamine response in mice.
Fig. 4: Circulating miR-144-3p is associated with MDD severity and ketamine treatment response in MDD patients.
Fig. 5: Systemic knockdown of miR-144-3p reverses behavioral abnormalities exhibited by susceptible mice.
Fig. 6: Transcriptional alterations in blood induced by CSDS are dramatically blunted after miR-144-3p KD.

Similar content being viewed by others

References

  1. Fava M, Kendler KS. Major depression disorder. Neuron. 2000;28:335–41.

    CAS  PubMed  Google Scholar 

  2. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13–25.

    CAS  PubMed  Google Scholar 

  3. Kupfer DJ, Frank E, Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet. 2012;379:1045–55.

    PubMed  Google Scholar 

  4. Gaynes BN, Warden D, Trivedi MH, Wisniewski SR, Fava M, Rush AJ. What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr Serv. 2009;60:1439–45.

  5. Akil H, Gordon J, Hen R, Javitch J, Mayberg H, McEwen B, et al. Treatment resistant depression: a multi-scale, systems biology approach. Neurosci Biobehav Rev. 2018;84:272–88.

    PubMed  Google Scholar 

  6. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    CAS  PubMed  Google Scholar 

  7. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74:250–6.

    CAS  PubMed  Google Scholar 

  8. Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16:201–12.

    CAS  PubMed  Google Scholar 

  9. Mazière P, Enright AJ. Prediction of microRNA targets. Drug Disco Today. 2007;12:452–8.

    Google Scholar 

  10. van den Berg MMJ, Krauskopf J, Ramaekers JG, Kleinjans JCS, Prickaerts J, Briedé JJ. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol. 2020;185:101732.

    PubMed  Google Scholar 

  11. Lopez JP, Kos A, Turecki G. Major depression and its treatment: microRNAs as peripheral biomarkers of diagnosis and treatment response. Curr Opin Psychiatry. 2018;31:7–16.

    PubMed  Google Scholar 

  12. Gheysarzadeh A, Sadeghifard N, Afraidooni L, Pooyan F, Mofid MR, Valadbeigi H, et al. Serum-based microRNA biomarkers for major depression: MiR-16, miR-135a, and miR-1202. J Res Med Sci. 2018;23:69.

    PubMed  PubMed Central  Google Scholar 

  13. Fan HM, Sun XY, Guo W, Zhong AF, Niu W, Zhao L, et al. Differential expression of microRNA in peripheral blood mononuclear cells as specific biomarker for major depressive disorder patients. J Psychiatr Res. 2014;59:45–52.

    CAS  PubMed  Google Scholar 

  14. Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron. 2014;83:344–60.

    CAS  PubMed  Google Scholar 

  15. Lopez JP, Fiori LM, Cruceanu C, Lin R, Labonte B, Cates HM, et al. MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat Commun. 2017;8:15497.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science. 2010;329:1537–41.

    CAS  PubMed  Google Scholar 

  17. Torres-Berrío A, Nouel D, Cuesta S, Parise EM, Restrepo-Lozano JM, Larochelle P, et al. MiR-218: a molecular switch and potential biomarker of susceptibility to stress. Mol Psychiatry. 2020;25:951–64.

    PubMed  Google Scholar 

  18. Cathomas F, Bevilacqua L, Ramakrishnan A, Kronman H, Costi S, Schneider M, et al. Whole blood transcriptional signatures associated with rapid antidepressant response to ketamine in patients with treatment resistant depression. Transl Psychiatry. 2022;12:12.

  19. Association A. Diagnostic and statistical manual of mental disorders: DSM-5. Arlington, VA, Washington, D.C.: American Psychiatric Association; 2013.

  20. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured clinical interview for DSM-IV axis I disorders, clinician version (SCID-CV). Washington, DC: American Psychiatric Press; 1996.

  21. Busner J, Targum SD. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry. 2007;4:28–37.

    PubMed  PubMed Central  Google Scholar 

  22. Sackeim HA. The definition and meaning of treatment-resistant depression. J Clin Psychiatry. 2001;62:10–7.

    CAS  PubMed  Google Scholar 

  23. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9.

    CAS  PubMed  Google Scholar 

  24. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311:864–8.

    CAS  PubMed  Google Scholar 

  25. Krishnan V. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391–404.

    CAS  PubMed  Google Scholar 

  26. Bagot RC, Cates HM, Purushothaman I, Vialou V, Heller EA, Yieh L, et al. Ketamine and imipramine reverse transcriptional signatures of susceptibility and induce resilience-specific gene expression profiles. Biol Psychiatry. 2017;81:285–95.

    CAS  PubMed  Google Scholar 

  27. Vialou V. Serum response factor promotes resilience to chronic social stress through the induction of DeltaFosB. J Neurosci. 2010;30:14585–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R. Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology. 2009;204:361–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2:322–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Andrews A. FastQC: a quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

  33. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  34. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. http://www.R-project.org/.

  35. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res. 2009;37:W273–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5:R1.

    PubMed  PubMed Central  Google Scholar 

  37. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.

    CAS  PubMed  Google Scholar 

  38. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.

  39. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–31.

    CAS  PubMed  Google Scholar 

  40. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13:e0206239.

    PubMed  PubMed Central  Google Scholar 

  41. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinforma. 2013;14:128.

    Google Scholar 

  42. Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10:1089–93.

    CAS  PubMed  Google Scholar 

  43. Juhasz G, Dunham JS, McKie S, Thomas E, Downey D, Chase D, et al. The CREB1-BDNF-NTRK2 pathway in depression: multiple gene-cognition-environment interactions. Biol Psychiatry. 2011;69:762–71.

    CAS  PubMed  Google Scholar 

  44. Matsuda S, Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y. Roles of PI3K/AKT/GSK3 pathway involved in psychiatric illnesses. Diseases. 2019;7:22.

  45. Krishnan V, Han MH, Mazei-Robison M, Iñiguez SD, Ables JL, Vialou V, et al. AKT signaling within the ventral tegmental area regulates cellular and behavioral responses to stressful stimuli. Biol Psychiatry. 2008;64:691–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang T, Wu F, Yu D. miR-144/451 in hematopoiesis and beyond. ExRNA. 2019;1:16.

  47. He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21:4777.

  48. Huls G, van Es J, Clevers H, de Haan G, van Os R. Loss of Tcf7 diminishes hematopoietic stem/progenitor cell function. Leukemia. 2013;27:1613–4.

    CAS  PubMed  Google Scholar 

  49. Chatterjee A, Leichter AL, Fan V, Tsai P, Purcell RV, Sullivan MJ, et al. Erratum: A cross comparison of technologies for the detection of microRNAs in clinical FFPE samples of hepatoblastoma patients. Sci Rep. 2015;5:13505.

    PubMed  PubMed Central  Google Scholar 

  50. Godoy PM, Barczak AJ, DeHoff P, Srinivasan S, Etheridge A, Galas D, et al. Comparison of reproducibility, accuracy, sensitivity, and specificity of miRNA quantification platforms. Cell Rep. 2019;29:4212–22.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Glassman AH, Perel JM. The clinical pharmacology of imipramine. Implications for therapeutics. Arch Gen Psychiatry. 1973;28:649–53.

    CAS  PubMed  Google Scholar 

  52. Lorsch ZS, Loh YE, Purushothaman I, Walker DM, Parise EM, Salery M, et al. Estrogen receptor α drives pro-resilient transcription in mouse models of depression. Nat Commun. 2018;9:1116.

    PubMed  PubMed Central  Google Scholar 

  53. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.

    CAS  PubMed  Google Scholar 

  54. Carlezon WA, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28:436–45.

    CAS  PubMed  Google Scholar 

  55. Van Battum EY, Brignani S, Pasterkamp RJ. Axon guidance proteins in neurological disorders. Lancet Neurol. 2015;14:532–46.

    PubMed  Google Scholar 

  56. Torres-Berrío A, Hernandez G, Nestler EJ, Flores C. The Netrin-1/DCC guidance cue pathway as a molecular target in depression: translational evidence. Biol Psychiatry. 2020;88:611–24.

  57. van der Zee YY, Lardner CK, Parise EM, Mews P, Ramakrishnan A, Patel V, et al. Sex-specific role for SLIT1 in regulating stress susceptibility. Biol Psychiatry. 2022;91:81–91.

  58. Lee WS, Lee WH, Bae YC, Suk K. Axon guidance molecules guiding neuroinflammation. Exp Neurobiol. 2019;28:311–9.

    PubMed  PubMed Central  Google Scholar 

  59. Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010;207:1351–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fu YF, Du TT, Dong M, Zhu KY, Jing CB, Zhang Y, et al. Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. Blood. 2009;113:1340–9.

    CAS  PubMed  Google Scholar 

  61. Honda M, Kuwano Y, Katsuura-Kamano S, Kamezaki Y, Fujita K, Akaike Y, et al. Chronic academic stress increases a group of microRNAs in peripheral blood. PLoS ONE. 2013;8:e75960.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Katsuura S, Kuwano Y, Yamagishi N, Kurokawa K, Kajita K, Akaike Y, et al. MicroRNAs miR-144/144* and miR-16 in peripheral blood are potential biomarkers for naturalistic stress in healthy Japanese medical students. Neurosci Lett. 2012;516:79–84.

    CAS  PubMed  Google Scholar 

  63. Short AK, Fennell KA, Perreau VM, Fox A, O’Bryan MK, Kim JH, et al. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl Psychiatry. 2016;6:e837.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li Y, Wang N, Pan J, Wang X, Zhao Y, Guo Z. Hippocampal miRNA-144 modulates depressive-like behaviors in rats by targeting PTP1B. Neuropsychiatr Dis Treat. 2021;17:389–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang X, Sundquist K, Hedelius A, Palmér K, Memon AA, Sundquist J. Circulating microRNA-144-5p is associated with depressive disorders. Clin Epigenetics. 2015;7:69.

    PubMed  PubMed Central  Google Scholar 

  66. Murphy CP, Li X, Maurer V, Oberhauser M, Gstir R, Wearick-Silva LE, et al. MicroRNA-mediated rescue of fear extinction memory by miR-144-3p in extinction-impaired mice. Biol Psychiatry. 2017;81:979–89.

    CAS  PubMed  Google Scholar 

  67. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44:3865–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D, et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci USA. 2014;111:16136–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine. 1997;9:853–8.

    CAS  PubMed  Google Scholar 

  70. Liu JJ, Wei YB, Strawbridge R, Bao Y, Chang S, Shi L, et al. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol Psychiatry. 2020;25:339–50.

    CAS  PubMed  Google Scholar 

  71. Li RD, Shen CH, Tao YF, Zhang XF, Zhang QB, Ma ZY, et al. MicroRNA-144 suppresses the expression of cytokines through targeting RANKL in the matured immune cells. Cytokine. 2018;108:197–204.

    CAS  PubMed  Google Scholar 

  72. Dunn AJ, Swiergiel AH, de Beaurepaire R. Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev. 2005;29:891–909.

    CAS  PubMed  Google Scholar 

  73. Ménard C, Pfau ML, Hodes GE, Russo SJ. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology. 2017;42:62–80.

    PubMed  Google Scholar 

  74. Hodes GE, Kana V, Menard C, Merad M, Russo SJ. Neuroimmune mechanisms of depression. Nat Neurosci. 2015;18:1386–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao X, Shan Q, Xue HH. TCF1 in T cell immunity: a broadened frontier. Nat Rev Immunol. 2022;22:147–57.

  76. Li M, Santpere G, Imamura Kawasawa Y, Evgrafov OV, Gulden FO, Pochareddy S, et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science. 2018;362:eaat7615.

  77. Shafiee M, Tayefi M, Hassanian SM, Ghaneifar Z, Parizadeh MR, Avan A, et al. Depression and anxiety symptoms are associated with white blood cell count and red cell distribution width: a sex-stratified analysis in a population-based study. Psychoneuroendocrinology. 2017;84:101–8.

    PubMed  Google Scholar 

  78. Demircan F, Gözel N, Kılınç F, Ulu R, Atmaca M. The impact of red blood cell distribution width and neutrophil/lymphocyte ratio on the diagnosis of major depressive disorder. Neurol Ther. 2016;5:27–33.

    PubMed  Google Scholar 

  79. Lee HS, Chao HH, Huang WT, Chen SC, Yang HY. Psychiatric disorders risk in patients with iron deficiency anemia and association with iron supplementation medications: a nationwide database analysis. BMC Psychiatry. 2020;20:216.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kang SY, Kim HB, Sunwoo S. Association between anemia and maternal depression: a systematic review and meta-analysis. J Psychiatr Res. 2020;122:88–96.

    PubMed  Google Scholar 

  81. Liu Y, Xu J, Gu R, Li Z, Wang K, Qi Y, et al. Circulating exosomal miR-144-3p inhibits the mobilization of endothelial progenitor cells post myocardial infarction via regulating the MMP9 pathway. Aging. 2020;12:16294–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20:1752–60.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from Janssen Pharmaceutical Companies, by a grant from the National Institute of Mental Health (R01MH051399 to EJN) and by the Hope for Depression Research Foundation. We wish to thank Drs. Vincent Vialou and Christophe Gerald, previous members of the Mount Sinai research team who worked on the original mouse study.

Author information

Authors and Affiliations

Authors

Contributions

YYZ, OI, and EJN conceived the studies; YYZ performed the mice behavioral and antagomir experiments; YYZ, LMTE, AR, and LS performed the bioinformatic analyses; JWM, KA, and FC performed the human study and provided the human blood and related data; YYZ, OI, PM, CKL, DMW, ATB, AC, EMP, and HK performed mice blood collection; YYZ and OI performed RNA extraction; YYZ performed qPCRs; HMC provided the miRNA Nanostring dataset; OI, EJN, JWM, LMTE, LN, and BPFR contributed to the interpretation of the results; YYZ wrote the manuscript and prepared the figures; OI, EJN, and CJB edited the manuscript; all authors discussed the results and approved the manuscript.

Corresponding authors

Correspondence to Eric J. Nestler or Orna Issler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Zee, Y.Y., Eijssen, L.M.T., Mews, P. et al. Blood miR-144-3p: a novel diagnostic and therapeutic tool for depression. Mol Psychiatry 27, 4536–4549 (2022). https://doi.org/10.1038/s41380-022-01712-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01712-6

This article is cited by

Search

Quick links