Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Schizophrenia-derived hiPSC brain microvascular endothelial-like cells show impairments in angiogenesis and blood–brain barrier function

Abstract

Schizophrenia (SZ) is a complex neuropsychiatric disorder, affecting 1% of the world population. Long-standing clinical observations and molecular data have pointed to a possible vascular deficiency that could be acting synergistically with neuronal dysfunction in SZ. As SZ is a neurodevelopmental disease, the use of human-induced pluripotent stem cells (hiPSC) allows disease biology modeling while retaining the patient’s unique genetic signature. Previously, we reported a VEGFA signaling impairment in SZ-hiPSC-derived neural lineages leading to decreased angiogenesis. Here, we present a functional characterization of SZ-derived brain microvascular endothelial-like cells (BEC), the counterpart of the neurovascular crosstalk, revealing an intrinsically defective blood–brain barrier (BBB) phenotype. Transcriptomic assessment of genes related to endothelial function among three control (Ctrl BEC) and five schizophrenia patients derived BEC (SZP BEC), revealed that SZP BEC have a distinctive expression pattern of angiogenic and BBB-associated genes. Functionally, SZP BEC showed a decreased angiogenic response in vitro and higher transpermeability than Ctrl BEC. Immunofluorescence staining revealed less expression and altered distribution of tight junction proteins in SZP BEC. Moreover, SZP BEC’s conditioned media reduced barrier capacities in the brain microvascular endothelial cell line HCMEC/D3 and in an in vivo permeability assay in mice. Overall, our results describe an intrinsic failure of SZP BEC for proper barrier function. These findings are consistent with the hypothesis tracing schizophrenia origins to brain development and BBB dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SZP BEC have an altered gene expression pattern of angiogenic and BBB-related genes.
Fig. 2: SZP BEC present a lowered response to an angiogenic stimuli.
Fig. 3: SZP BEC exhibit an increased transpermeability.
Fig. 4: SZP BEC CM present a distinct angiogenic profile.
Fig. 5: SZP BEC CM increases vascular permeability.

Similar content being viewed by others

References

  1. Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50:825–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Potkin SG, Kane JM, Correll CU, Lindenmayer J-P, Agid O, Marder SR, et al. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. Npj Schizophr. 2020;6:1.

    PubMed  PubMed Central  Google Scholar 

  3. Avramopoulos D. Recent advances in the genetics of schizophrenia. Mol Neuropsychiatry. 2018;4:35–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ripke S, Neale BM, Corvin A, Walters JTR, Farh KH, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    CAS  PubMed Central  Google Scholar 

  5. Stilo S, Forti M, Murray R. Environmental risk factors for schizophrenia: implications for prevention. Neuropsychiatry. 2011;1:457–66.

    Google Scholar 

  6. Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol. 2011;93:23–58.

    CAS  PubMed  Google Scholar 

  7. Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40.

    CAS  PubMed  Google Scholar 

  8. Costain G, Bassett AS. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era. Appl Clin Genet. 2012;5:1–18.

    PubMed  PubMed Central  Google Scholar 

  9. Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–93.

    CAS  PubMed  Google Scholar 

  10. Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry. 2015;5:e623–e623.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Richetto J, Meyer U. Epigenetic modifications in schizophrenia and related disorders: molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiatry. 2021;89:215–26.

    CAS  PubMed  Google Scholar 

  12. Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A, Chong D. Neurovascular unit dysfunction and blood–brain barrier hyperpermeability contribute to schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front Psychiatry. 2017;8:83.

    PubMed  PubMed Central  Google Scholar 

  13. Katsel P, Roussos P, Pletnikov M, Haroutunian V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia – angiogenesis connection. Neurosci Biobehav Rev. 2017;77:327–39.

    PubMed  PubMed Central  Google Scholar 

  14. Bleuler E. Dementia praecox or the group of schizophrenias. Oxford, England: International Universities Press; 1950.

    Google Scholar 

  15. Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC, Hunter ES 3rd, et al. Blood-brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res. 2017;109:1680–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt-Kastner R, van Os J, Esquivel G, Steinbusch HWM, Rutten BPF. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Mol Psychiatry. 2012;17:1194–205.

    CAS  PubMed  Google Scholar 

  17. Pong S, Karmacharya R, Sofman M, Bishop JR, Lizano P. The role of brain microvascular endothelial cell and blood-brain barrier dysfunction in schizophrenia. Complex Psychiatry. 2020;6:30–46.

    PubMed  PubMed Central  Google Scholar 

  18. Greene C, Hanley N, Campbell M. Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl Psychiatry. 2020;10:373.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Marín-Padilla M. The human brain intracerebral microvascular system: development and structure. Front Neuroanat. 2012;6:1–14.

    Google Scholar 

  20. Ben-Zvi A, Liebner S. Developmental regulation of barrier- and non-barrier blood vessels in the CNS. J Intern Med. 2021;1:1–16.

    Google Scholar 

  21. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7:a020412.

    PubMed  PubMed Central  Google Scholar 

  22. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96:17–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K, et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry. 2015;20:361–8.

    CAS  PubMed  Google Scholar 

  24. Hoffman GE, Schrode N, Flaherty E, Brennand KJ. New considerations for hiPSC-based models of neuropsychiatric disorders. Mol Psychiatry. 2019;24:49–66.

    CAS  PubMed  Google Scholar 

  25. Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol. 2017;13:265–78.

    PubMed  PubMed Central  Google Scholar 

  26. Das D, Feuer K, Wahbeh M, Avramopoulos D. Modeling psychiatric disorder biology with stem cells. Curr Psychiatry Rep. 2020;22:24.

    PubMed  PubMed Central  Google Scholar 

  27. Moslem M, Olive J, Falk A. Stem cell models of schizophrenia, what have we learned and what is the potential? Schizophr Res. 2019;210:3–12.

    PubMed  Google Scholar 

  28. Balan S, Toyoshima M, Yoshikawa T. Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiol Dis. 2019;131:104162.

    CAS  PubMed  Google Scholar 

  29. Casas BS, Vitória G, do Costa MN, Madeiro da Costa R, Trindade P, Maciel R, et al. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Transl Psychiatry. 2018;8:48.

    PubMed  PubMed Central  Google Scholar 

  30. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473:221–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sochacki J, Devalle S, Reis M, de Moraes Maciel R, da Silveira Paulsen B, Brentani H, et al. Generation of iPS cell lines from schizophrenia patients using a non-integrative method. Stem Cell Res. 2016;17:97–101.

    CAS  PubMed  Google Scholar 

  32. Qian T, Maguire SE, Canfield SG, Bao X, Olson WR, Shusta EV, et al. Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Sci Adv. 2017;3:48–50.

    Google Scholar 

  33. Stebbins MJ, Wilson HK, Canfield SG, Qian T, Palecek SP, Shusta EV. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93–102.

    CAS  PubMed  Google Scholar 

  34. Prieto C, Casas B, Falcón P, Villanueva A, Lois P, Lattus J, et al. Downregulation of the Netrin-1 receptor UNC5b underlies increased placental angiogenesis in human gestational diabetes mellitus. Int J Mol Sci. 2019;20:1408.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Carpentier G, Martinelli M, Courty J, Cascone I. Angiogenesis analyzer for ImageJ. In: 4th ImageJ User and Developer Conference proceedings. Mondorf-les-Bains, Luxembourg; 2012. p. 198–201. http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ&lang=en&artpage=6-6#outil_sommaire_6.

  36. Takahashi H, Hattori S, Iwamatsu A, Takizawa H, Shibuya M. A Novel Snake Venom Vascular Endothelial Growth Factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF Receptor-1. J Biol Chem. 2004;279:46304–14.

    CAS  PubMed  Google Scholar 

  37. Brash JT, Ruhrberg C, Fantin A. Evaluating vascular hyperpermeability-inducing agents in the skin with the miles assay. J Vis Exp. 2018;136:e57524.

    Google Scholar 

  38. Schmidt-kastner R, Os JVan, Steinbusch HWM. Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res. 2006;84:253–71.

    PubMed  Google Scholar 

  39. Fulzele S, Pillai A. Decreased VEGF mRNA expression in the dorsolateral prefrontal cortex of schizophrenia subjects. Schizophr Res. 2009;115:372–3.

    PubMed  Google Scholar 

  40. Lee B-H, Hong J-P, Hwang J-A, Ham B-J, Na K-S, Kim W-J, et al. Alterations in plasma vascular endothelial growth factor levels in patients with schizophrenia before and after treatment. Psychiatry Res. 2015;228:95–99.

    CAS  PubMed  Google Scholar 

  41. Xiao W, Zhan Q, Ye F, Tang X, Li J, Dong H, et al. Baseline serum vascular endothelial growth factor levels predict treatment response to antipsychotic medication in patients with schizophrenia. Eur Neuropsychopharmacol. 2018;28:603–9.

    CAS  PubMed  Google Scholar 

  42. Ye F, Zhan Q, Xiao W, Tang X, Li J, Dong H, et al. Altered serum levels of vascular endothelial growth factor in first-episode drug-naïve and chronic medicated schizophrenia. Psychiatry Res. 2018;264:361–5.

    CAS  PubMed  Google Scholar 

  43. Mehlen P, Delloye-Bourgeois C, Chédotal A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer. 2011;11:188–97.

    CAS  PubMed  Google Scholar 

  44. Podjaski C, Alvarez JI, Bourbonniere L, Larouche S, Terouz S, Bin JM, et al. Netrin 1 regulates blood–brain barrier function and neuroinflammation. Brain. 2015;138:1598–612.

    PubMed  PubMed Central  Google Scholar 

  45. Prieto CP, Ortiz MC, Villanueva A, Villarroel C, Edwards SS, Elliott M, et al. Netrin-1 acts as a non-canonical angiogenic factor produced by human Wharton’s jelly mesenchymal stem cells (WJ-MSC). Stem Cell Res Ther. 2017;8:43.

    PubMed  PubMed Central  Google Scholar 

  46. Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem. 2016;139:91–114.

    CAS  PubMed  Google Scholar 

  47. Brilha S, Ong CWM, Weksler B, Romero N, Couraud P-O, Friedland JS. Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an in vitro model of CNS tuberculosis. Sci Rep. 2017;7:16031.

    PubMed  PubMed Central  Google Scholar 

  48. Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020;17:69.

    PubMed  PubMed Central  Google Scholar 

  49. Huang G, Osorio D, Guan J, Ji G, Cai JJ. Overdispersed gene expression in schizophrenia. Npj Schizophr. 2020;6:9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2:1117–33.

    PubMed  PubMed Central  Google Scholar 

  51. Schmidt-Kastner R, Guloksuz S, Kietzmann T, van Os J, Rutten BPF. Analysis of GWAS-derived schizophrenia genes for links to ischemia-hypoxia response of the brain. Front Psychiatry. 2020;11:1–9.

    Google Scholar 

  52. Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, et al. ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation. J Cell Biol. 2015;208:821–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dev KK, Henley JM. The schizophrenic faces of PICK1. Trends Pharmacol Sci. 2006;27:574–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li C, Tao R, Qin W, Zheng Y, He G, Shi Y, et al. Positive association between PDLIM5 and schizophrenia in the Chinese Han population. Int J Neuropsychopharmacol. 2008;11:27–34.

    CAS  PubMed  Google Scholar 

  55. Leduc-Galindo D, Qvist P, Tóth AE, Fryland T, Nielsen MS, Børglum AD, et al. The effect of hypoxia on ZEB1 expression in a mimetic system of the blood-brain barrier. Microvasc Res. 2019;122:131–5.

    CAS  PubMed  Google Scholar 

  56. Li Y, Xia Y, Zhu H, Luu E, Huang G, Sun Y, et al. Investigation of neurodevelopmental deficits of 22 q11.2 deletion syndrome with a patient-iPSC-derived blood–brain barrier model. Cells. 2021;10:2576.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pong S, Lizano P, Karmacharya R. Investigating blood-brain barrier dysfunction in schizophrenia using brain microvascular endothelial cells derived from patient-specific stem cells. Biol Psychiatry. 2020;87:S189–S190.

    Google Scholar 

  58. Crockett AM, Ryan SK, Vásquez AH, Canning C, Kanyuch N, Kebir H, et al. Disruption of the blood–brain barrier in 22q11.2 deletion syndrome. Brain. 2021;144:1351–60.

    PubMed  PubMed Central  Google Scholar 

  59. Hashimoto K, Shimizu E, Komatsu N, Nakazato M, Okamura N, Watanabe H, et al. Increased levels of serum basic fibroblast growth factor in schizophrenia. Psychiatry Res. 2003;120:211–8.

    CAS  PubMed  Google Scholar 

  60. Greene C, Kealy J, Humphries MM, Gong Y, Hou J, Hudson N, et al. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry. 2018;23:2156–66.

    CAS  PubMed  Google Scholar 

  61. Kis B, Chen L, Ueta Y, Busija DW. Autocrine peptide mediators of cerebral endothelial cells and their role in the regulation of blood–brain barrier. Peptides. 2006;27:211–22.

    CAS  PubMed  Google Scholar 

  62. Vermeer PD, Denker J, Estin M, Moninger TO, Keshavjee S, Karp P, et al. MMP9 modulates tight junction integrity and cell viability in human airway epithelia. Am J Physiol Cell Mol Physiol. 2009;296:L751–L762.

    CAS  Google Scholar 

  63. Domenici E, Willé DR, Tozzi F, Prokopenko I, Miller S, McKeown A, et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS ONE. 2010;5:e9166.

    PubMed  PubMed Central  Google Scholar 

  64. Yamamori H, Hashimoto R, Ishima T, Kishi F, Yasuda Y, Ohi K, et al. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine. Neurosci Lett. 2013;556:37–41.

    CAS  PubMed  Google Scholar 

  65. Chang S-H, Chiang S-Y, Chiu C-C, Tsai C-C, Tsai H-H, Huang C-Y, et al. Expression of anti-cardiolipin antibodies and inflammatory associated factors in patients with schizophrenia. Psychiatry Res. 2011;187:341–6.

    CAS  PubMed  Google Scholar 

  66. Han H, He X, Tang J, Liu W, Liu K, Zhang J, et al. The C(−1562)T polymorphism of matrix metalloproteinase-9 gene is associated with schizophrenia in China. Psychiatry Res. 2011;190:163–4.

    PubMed  Google Scholar 

  67. Rybakowski JK, Skibinska M, Kapelski P, Kaczmarek L, Hauser J. Functional polymorphism of the matrix metalloproteinase-9 (MMP-9) gene in schizophrenia. Schizophr Res. 2009;109:90–93.

    PubMed  Google Scholar 

  68. Wiera G, Wozniak G, Bajor M, Kaczmarek L, Mozrzymas JW. Maintenance of long-term potentiation in hippocampal mossy fiber-CA3 pathway requires fine-tuned MMP-9 proteolytic activity. Hippocampus. 2013;23:529–43.

    CAS  PubMed  Google Scholar 

  69. Glasgow SD, Ruthazer ES, Kennedy TE. Guiding synaptic plasticity: novel roles for netrin-1 in synaptic plasticity and memory formation in the adult brain. J Physiol. 2021;599:493–505.

    CAS  PubMed  Google Scholar 

  70. Glasgow SD, Labrecque S, Beamish IV, Aufmkolk S, Gibon J, Han D, et al. Activity-dependent Netrin-1 secretion drives synaptic insertion of GluA1-containing AMPA receptors in the Hippocampus. Cell Rep. 2018;25:168–.e6.

    CAS  PubMed  Google Scholar 

  71. Bayas A, Hummel V, Kallmann BA, Karch C, Toyka KV, Rieckmann P. Human cerebral endothelial cells are a potential source for bioactive BDNF. Cytokine. 2002;19:55–58.

    CAS  PubMed  Google Scholar 

  72. Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi JI, Tandon NN, et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett. 2000;470:113–7.

    CAS  PubMed  Google Scholar 

  73. Yi H, Hu J, Qian J, Hackam AS. Expression of brain-derived neurotrophic factor is regulated by the Wnt signaling pathway. Neuroreport. 2012;23:189–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, et al. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma. 2008;25:130–9.

    PubMed  Google Scholar 

  75. Lu TM, Houghton S, Magdeldin T, Durán JGB, Minotti AP, Snead A, et al. Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc Natl Acad Sci USA 2021;118:e2016950118.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lippmann ES, Azarin SM, Palecek SP, Shusta EV. Commentary on human pluripotent stem cell-based blood–brain barrier models. Fluids Barriers CNS. 2020;17:64.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Carol San Martin for kindly donating the HCMEC/D3 line. We are grateful to all the Steven Rehen’s laboratory crew, especially to Dr. Livia Goto, Ismael Gomez, and Scarlett Mercante for technical support. We thank Sofía Puvogel and Robert Seitter for critical reading of the manuscript and Dr. Emiliano Molina for technical assistance. Intramural grants provided from the D’Or Institute for Research and Education (IDOR). Funding from ANID Fondecyt # 1190083 and Fondecyt # 1221522 (VP) & Conicyt # 21150781 (BSC).

Author information

Authors and Affiliations

Authors

Contributions

BSC and VP conceived and designed the experiments. BSC, GV, CPP, MC, CC, and MU performed the experiments and/or contributed to data acquisition. BSC and VP analyzed and interpreted the data. BSC wrote the original article. CPP, MC, SKR, FE, ME, and VP critically revised and edited the article. VP, FE, ME, and SR provided resources, and VP was responsable for general supervision. All authors approved the final version of the article.

Corresponding author

Correspondence to Verónica Palma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas, B.S., Vitória, G., Prieto, C.P. et al. Schizophrenia-derived hiPSC brain microvascular endothelial-like cells show impairments in angiogenesis and blood–brain barrier function. Mol Psychiatry 27, 3708–3718 (2022). https://doi.org/10.1038/s41380-022-01653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01653-0

This article is cited by

Search

Quick links