Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain microvascular endothelial cells and blood-brain barrier dysfunction in psychotic disorders

Abstract

Although there is convergent evidence for blood-brain barrier (BBB) dysfunction and peripheral inflammation in schizophrenia (SZ) and bipolar disorder (BD), it is unknown whether BBB deficits are intrinsic to brain microvascular endothelial cells (BMECs) or arise via effects of peripheral inflammatory cytokines. We examined BMEC function using stem cell-based models to identify cellular and molecular deficits associated with BBB dysfunction in SZ and BD. Induced pluripotent stem cells (iPSCs) from 4 SZ, 4 psychotic BD and 4 healthy control (HC) subjects were differentiated into BMEC-“like” cells. Gene expression and protein levels of tight junction proteins were assessed. Transendothelial electrical resistance (TEER) and permeability were assayed to evaluate BBB function. Cytokine levels were measured from conditioned media. BMECs derived from human iPSCs in SZ and BD did not show differences in BBB integrity or permeability compared to HC BMECs. Outlier analysis using TEER revealed a BBB-deficit (n = 3) and non-deficit (n = 5) group in SZ and BD lines. Stratification based on BBB function in SZ and BD patients identified a BBB-deficit subtype with reduced barrier function, tendency for increased permeability to smaller molecules, and decreased claudin-5 (CLDN5) levels. BMECs from the BBB-deficit group show increased matrix metallopeptidase 1 (MMP1) activity, which correlated with reduced CLDN5 and worse BBB function, and was improved by tumor necrosis factor α (TNFα) and MMP1 inhibition. These results show potential deficits in BMEC-like cells in psychotic disorders that result in BBB disruption and further identify TNFα and MMP1 as promising targets for ameliorating BBB deficits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human iPSC-derived BMECs from SZ patients demonstrate aberrant barrier function in a BBB model.
Fig. 2: A psychosis subgroup shows extensive BBB leakage.
Fig. 3: MMP1 secreted by SZ BMECs impairs BBB function.
Fig. 4: Inhibition of MMP1 and TNFα restores BBB function.

Similar content being viewed by others

Data availability

Data as well as data cleaning are available upon request to the corresponding author.

Code availability

Analysis code is available upon request to the corresponding author.

References

  1. Murray CJL, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197–223.

    PubMed  Google Scholar 

  2. Martin J, Taylor MJ, Lichtenstein P. Assessing the evidence for shared genetic risks across psychiatric disorders and traits. Psychol Med. 2018;48:1759–74.

    PubMed  Google Scholar 

  3. Pong S, Karmacharya R, Sofman M, Bishop JR, Lizano P. The role of brain microvascular endothelial cell and blood-brain barrier dysfunction in schizophrenia. Complex Psychiatry. 2020;6:30–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 2018;135:311–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hwang Y, Kim J, Shin J-Y, Kim J-I, Seo J-S, Webster MJ, et al. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia. Transl Psychiatry. 2013;3:e321.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS. 2019;16:3.

    PubMed  PubMed Central  Google Scholar 

  7. Cai HQ, Catts VS, Webster MJ, Galletly C, Liu D, O’Donnell M, et al. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol Psychiatry. 2018. https://doi.org/10.1038/s41380-018-0235-x.

  8. Katsel P, Roussos P, Pletnikov M, Haroutunian V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia—angiogenesis connection. Neurosci Biobehav Rev. 2017;77:327–39.

    PubMed  PubMed Central  Google Scholar 

  9. de Klerk OL, Willemsen ATM, Bosker FJ, Bartels AL, Hendrikse NH, den Boer JA, et al. Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia. Psychiatry Res Neuroimaging. 2010;183:151–6.

    Google Scholar 

  10. Hoosain FG, Choonara YE, Tomar LK, Kumar P, Tyagi C, du Toit LC, et al. Bypassing P-glycoprotein drug efflux mechanisms: possible applications in pharmacoresistant schizophrenia therapy. BioMed Res Int. 2015;2015:1–21.

    Google Scholar 

  11. Kimchi-Sarfaty C, Oh JM, Kim I-W, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315:525–8.

    CAS  PubMed  Google Scholar 

  12. Martínez-Magaña JJ, Genís-Mendoza AD, González-Covarrubias V, Jiménez-Guenchi J, Galindo-Chávez AG, Roche-Bergua A, et al. Exploratory analysis of rare and novel variants in Mexican patients diagnosed with schizophrenia and dementia. Rev Investig Clín. 2019;71:1879.

    Google Scholar 

  13. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet. 2011;43:860–3.

    CAS  PubMed  Google Scholar 

  14. Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A, Chong D. Neurovascular unit dysfunction and blood–brain barrier hyperpermeability contribute to schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front Psychiatry. 2017;8:83.

    PubMed  PubMed Central  Google Scholar 

  15. Hoang D, Xu Y, Lutz O, Bannai D, Zeng V, Bishop JR, et al. Inflammatory subtypes in antipsychotic-naïve first-episode schizophrenia are associated with altered brain morphology and topological organization. Brain Behav Immun. 2022;100:297–308.

    CAS  PubMed  Google Scholar 

  16. Kamintsky L, Cairns KA, Veksler R, Bowen C, Beyea SD, Friedman A, et al. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. NeuroImage Clin. 2019;26:102049.

    PubMed  PubMed Central  Google Scholar 

  17. Lizano P, Lutz O, Xu Y, Rubin LH, Paskowitz L, Lee AM, et al. Multivariate relationships between peripheral inflammatory marker subtypes and cognitive and brain structural measures in psychosis. Mol Psychiatry. 2021;26:3430–43.

    CAS  PubMed  Google Scholar 

  18. Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14:9.

    PubMed  PubMed Central  Google Scholar 

  19. Kathuria A, Lopez-Lengowski K, Watmuff B, McPhie D, Cohen BM, Karmacharya R. Synaptic deficits in iPSC-derived cortical interneurons in schizophrenia are mediated by NLGN2 and rescued by N-acetylcysteine. Transl Psychiatry. 2019;9:321.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kathuria A, Lopez-Lengowski K, Jagtap SS, McPhie D, Perlis RH, Cohen BM, et al. Transcriptomic landscape and functional characterization of induced pluripotent stem cell-derived cerebral organoids in schizophrenia. JAMA Psychiatry. 2020. https://doi.org/10.1001/jamapsychiatry.2020.0196.

  21. Kathuria A, Lopez-Lengowski K, Vater M, McPhie D, Cohen BM, Karmacharya R. Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Med. 2020;12:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Crockett AM, Ryan SK, Vásquez AH, Canning C, Kanyuch N, Kebir H, et al. Disruption of the blood–brain barrier in 22q11.2 deletion syndrome. Brain. 2021;144:1351–60.

    PubMed  PubMed Central  Google Scholar 

  23. Li Y, Xia Y, Zhu H, Luu E, Huang G, Sun Y, et al. Investigation of neurodevelopmental deficits of 22 q11.2 deletion syndrome with a patient-iPSC-derived blood–brain barrier model. Cells. 2021;10:2576.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Neal EH, Marinelli NA, Shi Y, McClatchey PM, Balotin KM, Gullett DR, et al. A simplified, fully defined differentiation scheme for producing blood-brain barrier endothelial cells from human iPSCs. Stem Cell Rep. 2019;12:1380–8.

    CAS  Google Scholar 

  25. Pong S, Lizano P, Karmacharya R. Derivation, expansion, cryopreservation and characterization of brain microvascular endothelial cells from human induced pluripotent stem cells. J Vis Exp. 2020:e61629. https://doi.org/10.3791/61629.

    Google Scholar 

  26. Li CH, Lee CK. Minimum cross entropy thresholding. Pattern Recognit. 1993;26:617–25.

    Google Scholar 

  27. Li CH, Tam PKS. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit Lett. 1998;19:771–6.

    Google Scholar 

  28. Lizano PL, Keshavan MS, Tandon N, Mathew IT, Mothi SS, Montrose DM, et al. Angiogenic and immune signatures in plasma of young relatives at familial high-risk for psychosis and first-episode patients: a preliminary study. Schizophr Res. 2016;170:115–22.

    PubMed  Google Scholar 

  29. Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30:783–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Blanchard JW, Bula M, Davila-Velderrain J, Akay LA, Zhu L, Frank A, et al. Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat Med. 2020;26:952–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tamminga CA, Clementz BA, Pearlson G, Keshavan M, Gershon ES, Ivleva EI, et al. Biotyping in psychosis: using multiple computational approaches with one data set. Neuropsychopharmacology. 2021;46:143–55.

    PubMed  Google Scholar 

  32. Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, et al. Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry. 2016;173:373–84.

    PubMed  Google Scholar 

  33. Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun. 2012;26:1273–9.

    CAS  PubMed  Google Scholar 

  34. Bechter K, Reiber H, Herzog S, Fuchs D, Tumani H, Maxeiner HG. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood–CSF barrier dysfunction. J Psychiatr Res. 2010;44:321–30.

    CAS  PubMed  Google Scholar 

  35. Futtrup J, Margolinsky R, Benros ME, Moos T, Routhe LJ, Rungby J, et al. Blood-brain barrier pathology in patients with severe mental disorders: a systematic review and meta-analysis of biomarkers in case-control studies. Brain Behav Immun Health. 2020;6:100102.

    PubMed  PubMed Central  Google Scholar 

  36. Kelly S, Guimond S, Pasternak O, Lutz O, Lizano P, Cetin-Karayumak S, et al. White matter microstructure across brain-based biotypes for psychosis—findings from the bipolar-schizophrenia network for intermediate phenotypes. Psychiatry Res Neuroimaging. 2021;308:111234.

    PubMed  Google Scholar 

  37. Bishop JR, Zhang L, Lizano P. Inflammation subtypes and translating inflammation-related genetic findings in schizophrenia and related psychoses: a perspective on pathways for treatment stratification and novel therapies. Harv Rev Psychiatry. 2022;30:59–70.

    PubMed  PubMed Central  Google Scholar 

  38. Kappelmann N, Perry BI, Khandaker GM. Prenatal and childhood immuno-metabolic risk factors for adult depression and psychosis. Harv Rev Psychiatry. 2022;30:8–23.

    PubMed  Google Scholar 

  39. Afridi R, Seol S, Kang HJ, Suk K. Brain-immune interactions in neuropsychiatric disorders: lessons from transcriptome studies for molecular targeting. Biochem Pharm. 2021;188:114532.

    CAS  PubMed  Google Scholar 

  40. Comer AL, Carrier M, Tremblay M-È, Cruz-Martín A. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front Cell Neurosci. 2020;14:274.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Suzuki Y, Nagai N, Umemura K. A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front Cell Neurosci. 2016;10:2.

    PubMed  PubMed Central  Google Scholar 

  42. O’Carroll SJ, Kho DT, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131.

    PubMed  PubMed Central  Google Scholar 

  43. Yu Q, Tao H, Wang X, Li M. Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke. Neural Regen Res. 2015;10:1882.

    PubMed  PubMed Central  Google Scholar 

  44. Miao Z, Dong Y, Fang W, Shang D, Liu D, Zhang K, et al. VEGF increases paracellular permeability in brain endothelial cells via upregulation of EphA2: VEGF induces EphA2 expression for permeability. Anat Rec. 2014;297:964–72.

    CAS  Google Scholar 

  45. Blankesteijn M, Altara R. Inflammation in Heart Failure. 1st Edn. Elsevier; 2015.

  46. Rempe RG, Hartz AMS, Soldner ELB, Sokola BS, Alluri SR, Abner EL, et al. Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J Neurosci. 2018;38:4301–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Du G, Liu C, Li X, Chen W, He R, Wang X, et al. Induction of matrix metalloproteinase-1 by tumor necrosis factor-α is mediated by interleukin-6 in cultured fibroblasts of keratoconus. Exp Biol Med. 2016;241:2033–41.

    CAS  Google Scholar 

  48. Dayan N, editor. Skin aging handbook: an integrated approach to biochemistry and product development. Norwich, NY: William Andrew; 2008.

  49. Leite SR, de A. Inhibitors of human collagenase, MMP1. Eclét Quím 2009;34:87–102.

    CAS  Google Scholar 

  50. Shealy DJ, Cai A, Staquet K, Baker A, Lacy ER, Johns L, et al. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor α. MAbs 2010;2:428–39.

    PubMed  Google Scholar 

  51. Chen A-Q, Fang Z, Chen X-L, Yang S, Zhou Y-F, Mao L, et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis. 2019;10:487.

    PubMed  PubMed Central  Google Scholar 

  52. Orlovskaia DD, Solov’eva ZV. [Changes in the ultra-fine structure of capillaries of the embryonic brain in the presence of schizophrenia in the mother]. Zh Nevropatol Psikhiatr Im SS Korsakova. 1976;76:1043–6.

    CAS  Google Scholar 

  53. Uranova NA, Zimina IS, Vikhreva OV, Krukov NO, Rachmanova VI, Orlovskaya DD. Ultrastructural damage of capillaries in the neocortex in schizophrenia. World J Biol Psychiatry. 2010;11:567–78.

    PubMed  Google Scholar 

  54. Harris LW, Wayland M, Lan M, Ryan M, Giger T, Lockstone H, et al. The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS ONE 2008;3:e3964.

    PubMed  PubMed Central  Google Scholar 

  55. Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E. Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry. 2007;7:46.

    PubMed  PubMed Central  Google Scholar 

  56. Orlovskaia DD, Solov’eva ZV, Zimina IS. [Ultrastructural features of brain cells from the embryos of schizophrenic women]. Zh Nevropatol Psikhiatr Im SS Korsakova. 1975;75:1041–4.

    CAS  Google Scholar 

  57. Casas BS, Vitória G, do Costa MN, Madeiro da Costa R, Trindade P, Maciel R, et al. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Transl Psychiatry. 2018;8:48.

    PubMed  PubMed Central  Google Scholar 

  58. Greene C, Kealy J, Humphries MM, Gong Y, Hou J, Hudson N, et al. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry. 2018;23:2156–66.

    CAS  PubMed  Google Scholar 

  59. Sun Z-Y, Wei J, Xie L, Shen Y, Liu S-Z, Ju G-Z, et al. The CLDN5 locus may be involved in the vulnerability to schizophrenia. Eur Psychiatry. 2004;19:354–7.

    PubMed  Google Scholar 

  60. Ye L, Wei J, Sun Z, Xie L, Liu S, Ju G, et al. Further study of a genetic association between the CLDN5 locus and schizophrenia. Schizophr Res. 2005;75:139–41.

    PubMed  Google Scholar 

  61. Wu N, Zhang X, Jin S, Liu S, Ju G, Wang Z, et al. A weak association of the CLDN5 locus with schizophrenia in Chinese case–control samples. Psychiatry Res. 2010;178:223.

    CAS  PubMed  Google Scholar 

  62. Omidinia E, Mazar FM, Shahamati P. Polymorphism of the CLDN5 gene and Schizophrenia in an Iranian Population. Iran J Public Health. 2014;43:5.

    Google Scholar 

  63. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    PubMed Central  Google Scholar 

  64. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011;43:977–83.

    Google Scholar 

  65. Fillman SG, Cloonan N, Miller LC, Weickert CS. Markers of inflammation in the prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:133.

    CAS  PubMed  Google Scholar 

  66. Müller N. Immunoglobulin and albumin content of cerebrospinal fluid in schizophrenic patients: relationship to negative symptomatology. Schizophr Res. 1995;14:223–8.

    PubMed  Google Scholar 

  67. Lizano P, Lutz O, Ling G, Lee AM, Eum S, Bishop JR, et al. Association of choroid plexus enlargement with cognitive, inflammatory, and structural phenotypes across the psychosis spectrum. Am J Psychiatry. 2019;176:564–72.

    PubMed  PubMed Central  Google Scholar 

  68. Zhou Y-F, Huang J-C, Zhang P, Fan F-M, Chen S, Fan H-Z, et al. Choroid plexus enlargement and allostatic load in schizophrenia. Schizophr Bull. 2020;46:722–31.

    PubMed  Google Scholar 

  69. Schlaaff K, Dobrowolny H, Frodl T, Mawrin C, Gos T, Steiner J, et al. Increased densities of T and B lymphocytes indicate neuroinflammation in subgroups of schizophrenia and mood disorder patients. Brain Behav Immun. 2020;88:497–506.

    CAS  PubMed  Google Scholar 

  70. Bitanihirwe BKY, Woo T-UW. A conceptualized model linking matrix metalloproteinase-9 to schizophrenia pathogenesis. Schizophr Res. 2020. https://doi.org/10.1016/j.schres.2019.12.015.

  71. Reininghaus EZ, Lackner N, Birner A, Bengesser S, Fellendorf FT, Platzer M, et al. Extracellular matrix proteins matrix metallopeptidase 9 (MMP9) and soluble intercellular adhesion molecule 1 (sICAM-1) and correlations with clinical staging in euthymic bipolar disorder. Bipolar Disord. 2016;18:155–63.

    CAS  PubMed  Google Scholar 

  72. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21:1696–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Essali N, Goldsmith DR, Carbone L, Miller BJ. Psychosis as an adverse effect of monoclonal antibody immunotherapy. Brain Behav Immun. 2019;81:646–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Locher MR, Alam A. Acute psychosis in an adolescent treated with infliximab for Crohn’s disease. Prim Care Companion CNS Disord. 2015. https://doi.org/10.4088/PCC.15l01781.

  75. Thillard E-M, Gautier S, Babykina E, Carton L, Amad A, Bouzillé G, et al. Psychiatric adverse events associated with infliximab: a cohort study from the French Nationwide Discharge Abstract Database. Front Pharm. 2020;11:513.

    CAS  Google Scholar 

  76. Mehta J, Chen J, Yu F, Li D. Aspirin inhibits ox-LDL-mediated LOX-1 expression and metalloproteinase-1 in human coronary endothelial cells. Cardiovasc Res. 2004;64:243–9.

    CAS  PubMed  Google Scholar 

  77. Tsutsumi R, Ito H, Hiramitsu T, Nishitani K, Akiyoshi M, Kitaori T, et al. Celecoxib inhibits production of MMP and NO via down-regulation of NF-κB and JNK in a PGE2 independent manner in human articular chondrocytes. Rheumatol Int. 2008;28:727–36.

    CAS  PubMed  Google Scholar 

  78. Çakici N, van Beveren NJM, Judge-Hundal G, Koola MM, Sommer IEC. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol Med. 2019;49:2307–19.

    PubMed  PubMed Central  Google Scholar 

  79. Lu TM, Houghton S, Magdeldin T, Durán JGB, Minotti AP, Snead A, et al. Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc Natl Acad Sci. 2021;118:e2016950118.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institute of Mental Health Biobehavioral Research Awards for Innovative New Scientists (BRAINS) Award R01MH113858 (to RK), the National Institutes of Health Award KL2 TR002542 (PL), the Stuart T. Hauser Research Training Program in Biological and Social Psychiatry T32 MH 016259 (SS). the National Institute of Mental Health Clinical Scientist Development Award K08MH086846 (to RK), the Sydney R Baer Jr Foundation Grant (to PL), the One Mind Bipolar Disorders Award (to PL), the Doris Duke Charitable Foundation Clinical Scientist Development Award (to RK), the Ryan Licht Sang Bipolar Foundation (to RK), the Phyllis & Jerome Lyle Rappaport Foundation (to RK), the Harvard Stem Cell Institute (to RK) and by Steve Willis and Elissa Freud (to RK). We would like to thank Dr. Donna McPhie and Dr. Bruce Cohen for providing fibroblasts that were used to generate iPSCs for this study.

Author information

Authors and Affiliations

Authors

Contributions

PL adapted and optimized the differentiation protocol for deriving BMECs, as well as designing, conducting, analyzing, and interpreting the results. PL also drafted and edited the manuscript. SP conducted the experiments and helped with the experimental design. SP conducted the data analyses. SS assisted with experimental design, analyses, and proofreading the manuscript. RK provided the cell lines used for this experiment, as well as assisting in the experimental design, analyses, and drafting of the manuscript.

Corresponding authors

Correspondence to Paulo Lizano or Rakesh Karmacharya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizano, P., Pong, S., Santarriaga, S. et al. Brain microvascular endothelial cells and blood-brain barrier dysfunction in psychotic disorders. Mol Psychiatry 28, 3698–3708 (2023). https://doi.org/10.1038/s41380-023-02255-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02255-0

Search

Quick links