Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serotonin transporter binding in major depressive disorder: impact of serotonin system anatomy

Abstract

Serotonin transporter (5-HTT) binding deficits are reported in major depressive disorder (MDD). However, most studies have not considered serotonin system anatomy when parcellating brain regions of interest (ROIs). We now investigate 5-HTT binding in MDD in two novel ways: (1) use of a 5-HTT tract-based analysis examining binding along serotonergic axons; and (2) using the Copenhagen University Hospital Neurobiology Research Unit (NRU) 5-HT Atlas, based on brain-wide binding patterns of multiple serotonin receptor types. [11C]DASB 5-HTT PET scans were obtained in 60 unmedicated participants with MDD in a current depressive episode and 31 healthy volunteers (HVs). Binding potential (BPP) was quantified with empirical Bayesian estimation in graphical analysis (EBEGA). Within the [11C]DASB tract, the MDD group showed significantly lower BPP compared with HVs (p = 0.02). This BPP diagnosis difference also significantly varied by tract location (p = 0.02), with the strongest MDD binding deficit most proximal to brainstem raphe nuclei. NRU 5-HT Atlas ROIs showed a BPP diagnosis difference that varied by region (p < 0.001). BPP was lower in MDD in 3/10 regions (p-values < 0.05). Neither [11C]DASB tract or NRU 5-HT Atlas BPP correlated with depression severity, suicidal ideation, suicide attempt history, or antidepressant medication exposure. Future studies are needed to determine the causes of this deficit in 5-HTT binding being more pronounced in proximal axon segments and in only a subset of ROIs for the pathogenesis of MDD. Such regional specificity may have implications for targeting antidepressant treatment, and may extend to other serotonin-related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visualizing the 5-HTT serotonin axonal tract.
Fig. 2: Visualizing 5-HTT binding potential by diagnostic group.
Fig. 3: Serotonin axonal tract diagnostic group difference results.
Fig. 4: NRU 5-HT atlas diagnostic group difference results.

Similar content being viewed by others

References

  1. Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994;40:288–95.

    Article  CAS  PubMed  Google Scholar 

  2. Gryglewski G, Lanzenberger R, Kranz GS, Cumming P. Meta-analysis of molecular imaging of serotonin transporters in major depression. J Cereb Blood Flow Metab. 2014;34:1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kambeitz JP, Howes OD. The serotonin transporter in depression: meta-analysis of in vivo and post mortem findings and implications for understanding and treating depression. J Affect Disord. 2015;186:358–66.

    Article  CAS  PubMed  Google Scholar 

  4. Parsey RV, Hastings RS, Oquendo MA, Huang Y-Y, Simpson N, Arcement J, et al. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry. 2006;163:52–8.

    Article  PubMed  Google Scholar 

  5. Selvaraj S, Murthy NV, Bhagwagar Z, Bose SK, Hinz R, Grasby PM, et al. Diminished brain 5-HT transporter binding in major depression: a positron emission tomography study with [11 C] DASB. Psychopharmacology. 2011;213:555–62.

    Article  CAS  PubMed  Google Scholar 

  6. Malison RT, Price LH, Berman R, Van Dyck CH, Pelton GH, Carpenter L, et al. Reduced brain serotonin transporter availability in major depression as measured by [123I]-2β-carbomethoxy-3β-(4-iodophenyl) tropane and single photon emission computed tomography. Biol Psychiatry. 1998;44:1090–8.

    Article  CAS  PubMed  Google Scholar 

  7. Joensuu M, Tolmunen T, Saarinen PI, Tiihonen J, Kuikka J, Ahola P, et al. Reduced midbrain serotonin transporter availability in drug-naive patients with depression measured by SERT-specific [123I] nor-β-CIT SPECT imaging. Psychiatry Res Neuroimaging. 2007;154:125–31.

    Article  CAS  Google Scholar 

  8. Reimold M, Batra A, Knobel A, Smolka M, Zimmer A, Mann K, et al. Anxiety is associated with reduced central serotonin transporter availability in unmedicated patients with unipolar major depression: a [11 C] DASB PET study. Mol Psychiatry. 2008;13:606–13.

    Article  CAS  PubMed  Google Scholar 

  9. Staley JK, Sanacora G, Tamagnan G, Maciejewski PK, Malison RT, Berman RM, et al. Sex differences in diencephalon serotonin transporter availability in major depression. Biol Psychiatry. 2006;59:40–7.

    Article  CAS  PubMed  Google Scholar 

  10. Willeit M, Praschak-Rieder N, Neumeister A, Pirker W, Asenbaum S, Vitouch O, et al. [123I]-β-CIT SPECT imaging shows reduced brain serotonin transporter availability in drug-free depressed patients with seasonal affective disorder. Biol Psychiatry. 2000;47:482–9.

    Article  CAS  PubMed  Google Scholar 

  11. Lehto S, Tolmunen T, Joensuu M, Saarinen PI, Vanninen R, Ahola P, et al. Midbrain binding of [123I] nor-β-CIT in atypical depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30:1251–5.

    Article  CAS  Google Scholar 

  12. Nye JA, Purselle D, Plisson C, Voll RJ, Stehouwer JS, Votaw JR, et al. Decreased brainstem and putamen SERT binding potential in depressed suicide attempters using [11C]‐ZIENT pet imaging. Depression Anxiety. 2013;30:902–7.

    CAS  PubMed  Google Scholar 

  13. Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK, et al. Serotonin transporter binding in bipolar disorder assessed using [11C] DASB and positron emission tomography. Biol Psychiatry. 2006;60:207–17.

    Article  CAS  PubMed  Google Scholar 

  14. Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K, et al. Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [11C] DASB PET imaging study. Am J Psychiatry. 2001;158:1843–9.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer JH, Houle S, Sagrati S, Carella A, Hussey DF, Ginovart N, et al. Brain serotonin transporter binding potential measured with carbon11–labeled dasb positron emission tomography: Effects of major depressive episodes and severity of dysfunctionalattitudes. Arch Gen Psychiatry. 2004;61:1271–9.

    Article  CAS  PubMed  Google Scholar 

  16. Miller JM, Hesselgrave N, Ogden RT, Sullivan GM, Oquendo MA, Mann JJ, et al. Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder. Biol Psychiatry. 2013;74:287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M, et al. Serotonin transporter binding in patients with mood disorders: a PET study with [11C](+) McN5652. Biol Psychiatry. 2002;51:715–22.

    Article  CAS  PubMed  Google Scholar 

  18. Soares JC, Mann JJ. The functional neuroanatomy of mood disorders. J Psychiatr Res. 1997;31:393–432.

    Article  CAS  PubMed  Google Scholar 

  19. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    Article  CAS  PubMed  Google Scholar 

  20. Frankle WG, Huang Y, Hwang D-R, Talbot PS, Slifstein M, Van Heertum R, et al. Comparative evaluation of serotonin transporter radioligands 11C-DASB and 11C-McN 5652 in healthy humans. J Nucl Med. 2004;45:682–94.

    CAS  PubMed  Google Scholar 

  21. Beliveau V, Ozenne B, Strother S, Greve DN, Svarer C, Knudsen GM, et al. The structure of the serotonin system: a PET imaging study. Neuroimage. 2020;205:116240.

    Article  CAS  PubMed  Google Scholar 

  22. Beliveau V, Ganz M, Feng L, Ozenne B, Højgaard L, Fisher PM, et al. A high-resolution in vivo atlas of the human brain’s serotonin system. J Neurosci. 2017;37:120–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gopaldas M, Zanderigo F, Zhan S, Ogden RT, Miller JM, Rubin-Falcone H, et al. Brain serotonin transporter binding, plasma arachidonic acid and depression severity: a positron emission tomography study of major depression. J Affect Disord. 2019;257:495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yeh Y-W, Ho P-S, Chen C-Y, Kuo S-C, Liang C-S, Yen C-H, et al. Suicidal ideation modulates the reduction in serotonin transporter availability in male military conscripts with major depression: a 4-[18F]-ADAM PET study. World J Biol Psychiatry. 2015;16:502–12.

    Article  PubMed  Google Scholar 

  25. Ogden RT, Ojha A, Erlandsson K, Oquendo MA, Mann JJ, Parsey RV. In vivo quantification of serotonin transporters using [(11)C]DASB and positron emission tomography in humans: modeling considerations. J Cereb Blood Flow Metab. 2007;27:205–17.

    Article  CAS  PubMed  Google Scholar 

  26. Miller JM, Everett BA, Oquendo MA, Ogden RT, Mann JJ, Parsey RV. Positron emission tomography quantification of serotonin transporter binding in medication‐free bipolar disorder. Synapse. 2016;70:24–32.

    Article  CAS  PubMed  Google Scholar 

  27. Parsey RV, Kent JM, Oquendo MA, Richards MC, Pratap M, Cooper TB, et al. Acute occupancy of brain serotonin transporter by sertraline as measured by [11C]DASB and positron emission tomography. Biol Psychiatry. 2006;59:821–8.

    Article  CAS  PubMed  Google Scholar 

  28. First MB, Gibbon M, Spitzer RL, Williams JB, Benjamin LS. SCID-II Personality Questionnaire. Washington, D.C.: American Psychiatric Press; 1997.

  29. Beck AT, Ward CH, Mendelson M, Mock J, Erbauh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:53–63.

    Article  Google Scholar 

  30. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oquendo MA, Halberstam B, Mann JJ. Risk factors for suicidal behavior: the utility and limitations of research instruments. In: First MB, editor. Standardized Evaluation in Clinical Practice. Arlington, VA: American Psychiatric Publishing; 2003. p. 103–30.

  32. Beck AT, Kovacs M, Weissman A. Assessment of suicidal intention: the Scale for Suicide Ideation. J Consulting Clin Psychol. 1979;47:343.

    Article  CAS  Google Scholar 

  33. Belanger MJ, Simpson NR, Wang T, Van Heertum R, Mann JJ, Parsey RV. Biodistribution and Radiation Dosimetry of [11C]DASB in Baboons. Nucl Med Biol. 2004;31:1097–102.

    Article  CAS  PubMed  Google Scholar 

  34. Parsey RV, Slifstein M, Hwang DR, Abi-Dargham A, Simpson N, Mawlawi O. et al. Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-11C]WAY-100635 in humans: comparison of arterial and reference tisssue input functions. J Cereb Blood Flow Metab. 2000;20:1111–33.

    Article  CAS  PubMed  Google Scholar 

  35. Zanderigo F, Ogden RT, Bertoldo A, Cobelli C, Mann JJ, Parsey RV. Empirical Bayesian estimation in graphical analysis: a voxel-based approach for the determination of the volume of distribution in PET studies. Nucl Med Biol. 2010;37:443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zanderigo F, Mann JJ, Ogden RT. A hybrid deconvolution approach for estimation of in vivo non-displaceable binding for brain PET targets without a reference region. PLoS ONE. 2017;12:e0176636.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hornung J-P. The neuronatomy of the serotonergic system. Handbook of Behavioral Neuroscience. Elsevier; 2010. vol. 21. p. 51–64..

  38. Charnay Y, Léger L. Brain serotonergic circuitries. Dialogues Clin Neurosci. 2010;12:471.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Törk I. Anatomy of the Serotonergic System a. Ann N Y Acad Sci. 1990;600:9–34.

    Article  PubMed  Google Scholar 

  40. Wang J-L, Chiou J-M, Müller H-G. Functional data analysis. Annu Rev Stat Appl. 2016;3:257–95.

    Article  Google Scholar 

  41. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:14065823. 2014.

  42. Team RC. R: A language and environment for statistical computing. Vienna: Austria; 2013.

  43. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem. 1996;66:2621–4.

    Article  CAS  PubMed  Google Scholar 

  44. Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–31.

    Article  CAS  PubMed  Google Scholar 

  45. Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S. et al. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology. 2001;25:892–903.

    Article  CAS  PubMed  Google Scholar 

  46. Parsey RV, Hastings RS, Oquendo MA, Hu X, Goldman D, Huang Y-Y, et al. Effect of a triallelic functional polymorphism of the serotonin-transporter-linked promoter region on expression of serotonin transporter in the human brain. Am J Psychiatry. 2006;163:48–51.

    Article  PubMed  Google Scholar 

  47. Güzey C, Allard P, Brännström T, Spigset O. Radioligand binding to brain dopamine and serotonin receptors and transporters in Parkinson’s disease: relation to gene polymorphisms. Int J Neurosci. 2012;122:124–32.

    Article  PubMed  Google Scholar 

  48. Reimold M, Smolka M, Schumann G, Zimmer A, Wrase J, Mann K, et al. Midbrain serotonin transporter binding potential measured with [11 C] DASB is affected by serotonin transporter genotype. J Neural Transm. 2007;114:635–9.

    Article  CAS  PubMed  Google Scholar 

  49. Praschak-Rieder N, Kennedy J, Wilson AA, Hussey D, Boovariwala A, Willeit M, et al. Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [11C] DASB positron emission tomography study. Biol Psychiatry. 2007;62:327–31.

    Article  CAS  PubMed  Google Scholar 

  50. Albert PR, Benkelfat C. The neurobiology of depression—revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. The Royal Society; 2013.

  51. Kinnally EL, Capitanio JP, Leibel R, Deng L, LeDuc C, Haghighi F, et al. Epigenetic regulation of serotonin transporter expression and behavior in infant rhesus macaques. Genes, Brain Behav. 2010;9:575–82.

    Article  CAS  PubMed  Google Scholar 

  52. Oquendo MA, Galfalvy H, Sullivan GM, Miller JM, Milak MM, Sublette ME, et al. Positron emission tomographic imaging of the serotonergic system and prediction of risk and lethality of future suicidal behavior. JAMA Psychiatry. 2016;73:1048–55.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    Article  CAS  PubMed  Google Scholar 

  54. Kalivas PW, Nakamura M. Neural systems for behavioral activation and reward. Curr Opin Neurobiol. 1999;9:223–7.

    Article  CAS  PubMed  Google Scholar 

  55. Oades RD, Halliday GM. Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res Rev. 1987;12:117–65.

    Article  Google Scholar 

  56. Hervé D, Pickel VM, Joh TH, Beaudet A. Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res. 1987;435:71–83.

    Article  PubMed  Google Scholar 

  57. Van Bockstaele EJ, Cestari DM, Pickel VM. Synaptic structure and connectivity of serotonin terminals in the ventral tegmental area: potential sites for modulation of mesolimbic dopamine neurons. Brain Res. 1994;647:307–22.

    Article  PubMed  Google Scholar 

  58. Neurocircuitry of mood disorders. Proceedings of the In Neuropsychopharmacology: The Fifth Generation of Progress; 2002. Citeseer.

  59. Wang H-L, Zhang S, Qi J, Wang H, Cachope R, Mejias-Aponte CA, et al. Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons. Cell Rep. 2019;26:1128–42. e1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Svensson JE, Svanborg C, Plavén-Sigray P, Kaldo V, Halldin C, Schain M, et al. Serotonin transporter availability increases in patients recovering from a depressive episode. Transl Psychiatry. 2021;11:1–10.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Mental health (P50MH090964, PI: J John Mann, MD and 5R01MH040695, PI: J John Mann, MD).

Author information

Authors and Affiliations

Authors

Contributions

EAB: methodology, software, formal analysis, validation, writing – original draft, and visualization; FZ: conceptualization, methodology, writing – review and editing, and supervision; DS: formal analysis, data curation, validation, visualization, and writing – review and editing; JM: conceptualization, data curation, investigation, supervision, project administration, and writing – review and editing; PH: methodology and writing – review and editing; HRF: methodology, software, validation, formal analysis, data curation, and writing – original draft; MAO: conceptualization, supervision, and writing – review and editing; MES: conceptualization, supervision, writing – review and editing, investigation, and project administration; RTO: conceptualization, methodology, validation, formal analysis, supervision, writing – review and editing; JJM: conceptualization, investigation, resources, supervision, project administration, funding acquisition, and writing – review and editing.

Corresponding author

Correspondence to Elizabeth A. Bartlett.

Ethics declarations

Conflict of interest

EAB, FZ, JM, PH, MES, TO, DS, and HRF declare no conflict of interest. MAO and JJM receive royalties from the Research Foundation for Mental Hygiene for the commercial use of the Columbia Suicide Severity Rating Scale. MAO serves as an advisor to Alkermes, Otsuka, ATAI, St. George’s University and Fundacion Jimenez Diaz. Her family owns stock in Bristol Myers Squibb.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartlett, E.A., Zanderigo, F., Shieh, D. et al. Serotonin transporter binding in major depressive disorder: impact of serotonin system anatomy. Mol Psychiatry 27, 3417–3424 (2022). https://doi.org/10.1038/s41380-022-01578-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01578-8

This article is cited by

Search

Quick links