Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cerebellar dysfunction and schizophrenia-like behavior in Ebp1-deficient mice

Abstract

Cerebellar deficits with Purkinje cell (PCs) loss are observed in several neurologic disorders. However, the underlying mechanisms as to how the cerebellum is affected during development remain unclear. Here we demonstrated that specific inactivation of murine Ebp1 in the central nervous system causes a profound neuropathology characterized by reduced cerebellar volume and PCs loss with abnormal dendritic development, leading to phenotypes including motor defects and schizophrenia (SZ)-like behaviors. Loss of Ebp1 leads to untimely gene expression of Fbxw7, an E3 ubiquitin ligase, resulting in aberrant protein degradation of PTF1A, thereby eliciting cerebellar defects. Reinstatement of Ebp1, but not the Ebp1-E183Ter mutant found in SZ patients, reconstituted cerebellar architecture with increased PCs numbers and improved behavioral phenotypes. Thus, our findings indicate a crucial role for EBP1 in cerebellar development, and define a molecular basis for the cerebellar contribution to neurologic disorders such as SZ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Loss of Ebp1 in the mouse brain leads to cerebellar hypoplasia and motor defects.
Fig. 2: Ebp1-CKO mice display impaired PC development with altered dendritic morphology, but restoring Ebp1 rescues cerebellar defects.
Fig. 3: EBP1 regulates cerebellar transcription factor PTF1A stability through ubiquitin ligase FBXW7.
Fig. 4: EBP1 represses Fbxw7 transcription and leads to the function of PTF1A in PC development.
Fig. 5: SZ patient mutations in Ebp1 affect EBP1 function, but they are unable to rescue the cerebellar defects in CKO mutants.

Similar content being viewed by others

References

  1. Liu Z, Ahn J-Y, Liu X, Ye K. Ebp1 isoforms distinctively regulate cell survival and differentiation. Proc Natl Acad Sci. 2006;103:10917–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahn JY, Liu X, Cheng D, Peng J, Chan PK, Wade PA, et al. Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell. 2005;18:435–45.

    Article  CAS  PubMed  Google Scholar 

  3. Ko HR, Kim CK, Lee SB, Song J, Lee KH, Kim KK, et al. P42 Ebp1 regulates the proteasomal degradation of the p85 regulatory subunit of PI3K by recruiting a chaperone-E3 ligase complex HSP70/CHIP. Cell Death Dis. 2014;5:e1131–e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hwang I, Ko HR, Ahn J-Y. The roles of multifunctional protein ErbB3 binding protein 1 (EBP1) isoforms from development to disease. Exp Mol Med. 2020;52:1039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ko HR, Hwang I, Ahn SY, Chang YS, Park WS, Ahn J-Y. Neuron-specific expression of p48 Ebp1 during murine brain development and its contribution to CNS axon regeneration. BMB Rep. 2017;50:126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.

    Article  CAS  PubMed  Google Scholar 

  7. Ko HR, Hwang I, Jin E-J, Yun T, Ryu D, Kang J-S, et al. Roles of ErbB3-binding protein 1 (EBP1) in embryonic development and gene-silencing control. Proc Natl Acad Sci. 2019;116:24852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim BS, Ko HR, Hwang I, Cho SW, Ahn JY. EBP1 regulates Suv39H1 stability via the ubiquitin-proteasome system in neural development. BMB Rep. 2021;54:413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, et al. Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun. 2014;5:3337.

    Article  PubMed  Google Scholar 

  10. Pascual M, Abasolo I, Mingorance-Le Meur A, Martínez A, Del Rio JA, Wright CV, et al. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA. 2007;104:5193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Millen KJ, Steshina EY, Iskusnykh IY, Chizhikov VV. Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proc Natl Acad Sci. 2014;111:E1777–E1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004;36:1301–5.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Kwan KM, Mailloux CM, Lee WK, Grinberg A, Wurst W, et al. LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. Proc Natl Acad Sci USA. 2007;104:13182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lui NC, Tam WY, Gao C, Huang J-D, Wang CC, Jiang L, et al. Lhx1/5 control dendritogenesis and spine morphogenesis of Purkinje cells via regulation of Espin. Nat Commun. 2017;8:15079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carlson KM, Andresen JM, Orr HT. Emerging pathogenic pathways in the spinocerebellar ataxias. Curr Opin Genet Dev. 2009;19:247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Picard H, Amado I, Mouchet-Mages S, Olié J-P, Krebs M-O. The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophrenia Bull. 2008;34:155–72.

    Article  Google Scholar 

  17. Mavroudis IA, Petrides F, Manani M, Chatzinikolaou F, Ciobică AS, Pădurariu M, et al. Purkinje cells pathology in schizophrenia. A morphometric approach. Rom J Morphol Embryol. 2017;58:419–24.

    PubMed  Google Scholar 

  18. Moberget T, Doan NT, Alnæs D, Kaufmann T, Córdova-Palomera A, Lagerberg TV, et al. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol Psychiatry. 2018;23:1512–20.

    Article  CAS  PubMed  Google Scholar 

  19. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001;294:173–7.

    Article  CAS  PubMed  Google Scholar 

  20. Minella AC, Clurman BE. Mechanisms of tumor suppression by the SCF(Fbw7). Cell Cycle. 2005;4:1356–9.

    Article  CAS  PubMed  Google Scholar 

  21. Nateri AS, Riera-Sans L, Da Costa C, Behrens A. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science. 2004;303:1374–8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24:72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jandke A, Da Costa C, Sancho R, Nye E, Spencer-Dene B, Behrens A. The F-box protein Fbw7 is required for cerebellar development. Dev Biol. 2011;358:201–12.

    Article  CAS  PubMed  Google Scholar 

  24. Kipreos ET, Pagano M. The F-box protein family. Genome Biol. 2000;1:Reviews3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Betz UA, Vosshenrich CA, Rajewsky K, Müller W. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr Biol. 1996;6:1307–16.

    Article  CAS  PubMed  Google Scholar 

  26. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet. 1999;23:99–103.

    Article  CAS  PubMed  Google Scholar 

  27. Wildner H, Das Gupta R, Bröhl D, Heppenstall PA, Zeilhofer HU, Birchmeier C. Genome-Wide Expression Analysis of Ptf1a- and Ascl1-Deficient Mice Reveals New Markers for Distinct Dorsal Horn Interneuron Populations Contributing to Nociceptive Reflex Plasticity. J. Neurosci. 2013;33:7299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang JC, Meredith DM, Mayer PR, Borromeo MD, Lai HC, Ou Y-H et al. Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Dev Cell. 2013;25:182–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim YS, Lee SY, Yoon JW, Kim D, Yu S, Kim JS, et al. Cardiotoxicity induced by the combination therapy of chloroquine and azithromycin in human embryonic stem cell-derived cardiomyocytes. BMB Rep. 2020;53:545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8:83–93.

    Article  CAS  PubMed  Google Scholar 

  31. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–20.

    Article  CAS  PubMed  Google Scholar 

  32. Park H-M, Kim H, Lee K-H, Cho J-Y. Analysis of opposing histone modifications H3K4me3 and H3K27me3 reveals candidate diagnostic biomarkers for TNBC and gene set prediction combination. BMB Rep. 2020;53:266–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim J, Jung E, Ahn SS, Yeo H, Lee JY, Seo JK, et al. WNT11 is a direct target of early growth response protein 1. BMB Rep. 2020;53:628–33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401:188–93.

    Article  CAS  PubMed  Google Scholar 

  35. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49:1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Zhang P, Wang Y, Zhan P, Liu C, Mao JH, et al. Distinct interactions of EBP1 Isoforms with FBXW7 elicits different functions in cancer. Cancer Res. 2017;77:1983–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lungu O, Barakat M, Laventure S, Debas K, Proulx S, Luck D, et al. The incidence and nature of cerebellar findings in schizophrenia: a quantitative review of fMRI literature. Schizophr Bull. 2013;39:797–806.

    Article  PubMed  Google Scholar 

  38. Moberget T, Ivry RB. Prediction, psychosis, and the cerebellum. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2019;4:820–31.

    Google Scholar 

  39. Kühn S, Romanowski A, Schubert F, Gallinat J. Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct. 2012;217:523–9.

    Article  PubMed  Google Scholar 

  40. Walther S, Strik W. Motor symptoms and schizophrenia. Neuropsychobiology. 2012;66:77–92.

    Article  PubMed  Google Scholar 

  41. Quinn M, McHugo M, Armstrong K, Woodward N, Blackford J, Heckers S. Impact of substance use disorder on gray matter volume in schizophrenia. Psychiatry Res Neuroimaging. 2018;280:9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, et al. Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiatry. 2018;75:1146–55.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ding Y, Ou Y, Pan P, Shan X, Chen J, Liu F, et al. Cerebellar structural and functional abnormalities in first-episode and drug-naive patients with schizophrenia: a meta-analysis. Psychiatry Res Neuroimaging. 2019;283:24–33.

    Article  PubMed  Google Scholar 

  44. Peralta V, Cuesta MJ. Motor features in psychotic disorders. I. Factor structure and clinical correlates. Schizophr Res. 2001;47:107–16.

    Article  CAS  PubMed  Google Scholar 

  45. Peralta V, de Jalón EG, Campos MS, Basterra V, Sanchez-Torres A, Cuesta MJ. Risk factors, pre-morbid functioning and episode correlates of neurological soft signs in drug-naive patients with schizophrenia-spectrum disorders. Psychological Med. 2011;41:1279–89.

    Article  CAS  Google Scholar 

  46. Hirjak D, Thomann PA, Kubera KM, Wolf ND, Sambataro F, Wolf RC. Motor dysfunction within the schizophrenia-spectrum: a dimensional step towards an underappreciated domain. Schizophr Res. 2015;169:217–33.

    Article  PubMed  Google Scholar 

  47. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488:647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K, Arnarsdottir S, et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature. 2014;505:361–6.

    Article  CAS  PubMed  Google Scholar 

  49. Rapoport J, Chavez A, Greenstein D, Addington A, Gogtay N. Autism spectrum disorders and childhood-onset schizophrenia: clinical and biological contributions to a relation revisited. J Am Acad Child Adolesc Psychiatry. 2009;48:10–18.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. Jama. 2002;288:1740–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Institute for Basic Science (IBS), Center for Neuroscience Imaging Research (IBS-R015-D1-2016-a00) for providing access to animal scanner and professional, technical support. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government [Ministry of Science, Information and Communication Technology and Future Planning (MSIP)] (2016R1A5A2945889 and 2020R1A2C2003268).

Author information

Authors and Affiliations

Authors

Contributions

Designed and analyzed the study, IH and J-YA; Performed Experiments, IH, B-SK, H-RK, SC, and SS; Performed MRI, IH, and H-YL; Analyzed Results, IH, S-WC, DR, and J-YA; Wrote Manuscript, J-YA.

Corresponding author

Correspondence to Jee-Yin Ahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, I., Kim, BS., Ko, H.R. et al. Cerebellar dysfunction and schizophrenia-like behavior in Ebp1-deficient mice. Mol Psychiatry 27, 2030–2041 (2022). https://doi.org/10.1038/s41380-022-01458-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01458-1

Search

Quick links