Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systems biological assessment of altered cytokine responses to bacteria and fungi reveals impaired immune functionality in schizophrenia

Abstract

Evidence suggests that complex interactions between the immune system and brain have important etiological and therapeutic implications in schizophrenia. However, the detailed cellular and molecular basis of immune dysfunction in schizophrenia remains poorly characterized. To better understand the immune changes and molecular pathways, we systemically compared the cytokine responses of peripheral blood mononuclear cells (PBMCs) derived from patients with schizophrenia and controls against bacterial, fungal, and purified microbial ligands, and identified aberrant cytokine response patterns to various pathogens, as well as reduced cytokine production after stimulation with muramyl dipeptide (MDP) in schizophrenia. Subsequently, we performed single-cell RNA sequencing on unstimulated and stimulated PBMCs from patients and controls and revealed widespread suppression of antiviral and inflammatory programs as well as impaired chemokine/cytokine–receptor interaction networks in various immune cell subpopulations of schizophrenic patients after MDP stimulation. Moreover, serum MDP levels were elevated in these patients and correlated with the course of the disease, suggesting increased bacterial translocation along with disease progression. In vitro assays revealed that MDP pretreatment altered the functional response of normal PBMCs to its re-stimulation, which partially recapitulated the impaired immune function in schizophrenia. In conclusion, we delineated the molecular and cellular landscape of impaired immune function in schizophrenia, and proposed a mutual interplay between innate immune impairment, reduced pathogen clearance, increased MDP translocation along schizophrenia development, and blunted innate immune response. These findings provide new insights into the pathogenic mechanisms that drive systemic immune activation, neuroinflammation, and brain abnormalities in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aberrant cytokine response patterns upon stimulation with various pathogens and microbial ligands in patients with schizophrenia.
Fig. 2: Unsupervised hierarchical clustering of the cytokine responses in the PBMCs obtained from the healthy controls (right, n = 17) and patients with schizophrenia (left, n = 20) induced by various pathogens and microbial ligands.
Fig. 3: Single-cell transcriptional profiling of naive and MDP-stimulated PBMCs.
Fig. 4: Consistent suppression of the MDP-stimulated antiviral and inflammatory gene programs in patients with schizophrenia.
Fig. 5: Elevated levels of MDP in schizophrenia.

Similar content being viewed by others

Data availability

The raw scRNA-seq data reported in this paper have been deposited (PRJCA006766) in the Genome Sequence Archive (GSA) database under accession identification HRA001425 that are publicly accessible at https://ngdc.cncb.ac.cn/gsa.

References

  1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1575–86.

    Article  PubMed  Google Scholar 

  2. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21:1696–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353:772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arias I, Sorlozano A, Villegas E, de Dios Luna J, McKenney K, Cervilla J, et al. Infectious agents associated with schizophrenia: a meta-analysis. Schizophr Res. 2012;136:128–36.

    Article  PubMed  Google Scholar 

  5. Benros ME, Eaton WW, Mortensen PB. The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry. 2014;75:300–6.

    Article  PubMed  Google Scholar 

  6. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  PubMed Central  CAS  Google Scholar 

  7. Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019;24:549–61.

    Article  CAS  PubMed  Google Scholar 

  8. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry. 2008;63:801–8.

    Article  CAS  PubMed  Google Scholar 

  9. de Witte L, Tomasik J, Schwarz E, Guest PC, Rahmoune H, Kahn RS, et al. Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res. 2014;154:23–29.

    Article  PubMed  Google Scholar 

  10. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herberth M, Koethe D, Cheng TM, Krzyszton ND, Schoeffmann S, Guest PC, et al. Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol Psychiatry. 2011;16:848–59.

    Article  CAS  PubMed  Google Scholar 

  12. Lago SG, Tomasik J, van Rees GF, Ramsey JM, Haenisch F, Cooper JD, et al. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol Psychiatry. 2020;25:2355–72.

    Article  CAS  PubMed  Google Scholar 

  13. Gladkevich A, Kauffman HF, Korf J. Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:559–76.

    Article  PubMed  Google Scholar 

  14. Lago SG, Tomasik J, van Rees GF, Steeb H, Cox DA, Rustogi N, et al. Drug discovery for psychiatric disorders using high-content single-cell screening of signaling network responses ex vivo. Sci Adv. 2019;5:eaau9093.

  15. Sainz J, Mata I, Barrera J, Perez-Iglesias R, Varela I, Arranz MJ, et al. Inflammatory and immune response genes have significantly altered expression in schizophrenia. Mol Psychiatry. 2013;18:1056–7.

    Article  CAS  PubMed  Google Scholar 

  16. Wu JQ, Green MJ, Gardiner EJ, Tooney PA, Scott RJ, Carr VJ, et al. Altered neural signaling and immune pathways in peripheral blood mononuclear cells of schizophrenia patients with cognitive impairment: a transcriptome analysis. Brain Behav Immun. 2016;53:194–206.

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Bueno B, Bioque M, Mac-Dowell KS, Barcones MF, Martinez-Cengotitabengoa M, Pina-Camacho L, et al. Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr Bull. 2014;40:376–87.

    Article  PubMed  Google Scholar 

  18. de Baumont A, Maschietto M, Lima L, Carraro DM, Olivieri EH, Fiorini A, et al. Innate immune response is differentially dysregulated between bipolar disease and schizophrenia. Schizophr Res. 2015;161:215–21.

    Article  PubMed  Google Scholar 

  19. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2:258–70.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bergink V, Gibney SM, Drexhage HA. Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biol Psychiatry. 2014;75:324–31.

    Article  CAS  PubMed  Google Scholar 

  21. Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA, Li Y, et al. Host and environmental factors influencing individual human cytokine responses. Cell. 2016;167:1111–24.e1113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Avgustin B, Wraber B, Tavcar R. Increased Th1 and Th2 immune reactivity with relative Th2 dominance in patients with acute exacerbation of schizophrenia and chronic schizophrenia. Croat Med J. 2005;46:268–74.

    PubMed  Google Scholar 

  23. Momtazmanesh S, Zare-Shahabadi A, Rezaei N. Cytokine alterations in schizophrenia: an updated review. Front Psychiatry. 2019;10:892.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reale M, Patruno A, De Lutiis MA, Pesce M, Felaco M, Di Giannantonio M, et al. Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls. BMC Neurosci. 2011;12:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rapaport MH, Bresee C. Serial mitogen-stimulated cytokine production from continuously ill patients with schizophrenia. Neuropsychopharmacology. 2010;35:428–34.

    Article  CAS  PubMed  Google Scholar 

  26. Tanay A, Regev A. Scaling single-cell genomics from phenomenology to mechanism. Nature. 2017;541:331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baran-Gale J, Chandra T, Kirschner K. Experimental design for single-cell RNA sequencing. Brief Funct Genomics. 2018;17:233–9.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Oosting M, Smeekens SP, Jaeger M, Aguirre-Gamboa R, Le KTT, et al. A functional genomics approach to understand variation in cytokine production in humans. Cell. 2016;167:1099–110.e1014.

    Article  CAS  PubMed  Google Scholar 

  30. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347–53.

    Article  CAS  PubMed  Google Scholar 

  32. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15:1484–506.

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Oosting M, Deelen P, Ricano-Ponce I, Smeekens S, Jaeger M, et al. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat Med. 2016;22:952–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510:363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karagiannis TT, Cleary JP Jr., Gok B, Henderson AJ, Martin NG, Yajima M, et al. Single cell transcriptomics reveals opioid usage evokes widespread suppression of antiviral gene program. Nat Commun. 2020;11:2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fillman SG, Weickert TW, Lenroot RK, Catts SV, Bruggemann JM, Catts VS, et al. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol Psychiatry. 2016;21:1090–8.

    Article  CAS  PubMed  Google Scholar 

  38. Dickerson F, Stallings C, Origoni A, Schroeder J, Katsafanas E, Schweinfurth L, et al. Inflammatory markers in recent onset psychosis and chronic schizophrenia. Schizophr Bull. 2016;42:134–41.

    PubMed  Google Scholar 

  39. Chen S, Tian L, Chen N, Xiu MH, Wang ZR, Wang YC, et al. More dampened monocytic Toll-like receptor 4 response to lipopolysaccharide and its association with cognitive function in Chinese Han first-episode patients with schizophrenia. Schizophr Res. 2019;206:300–6.

    Article  PubMed  Google Scholar 

  40. Uranova NA, Bonartsev PD, Androsova LV, Rakhmanova VI, Kaleda VG. Impaired monocyte activation in schizophrenia: ultrastructural abnormalities and increased IL-1β production. Eur Arch Psychiatry Clin Neurosci. 2017;267:417–26.

    Article  PubMed  Google Scholar 

  41. Maes M, Berk M, Goehler L, Song C, Anderson G, Gałecki P, et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 2012;10:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maes M, Carvalho AF. The Compensatory Immune-Regulatory Reflex System (CIRS) in depression and bipolar disorder. Mol Neurobiol. 2018;55:8885–903.

    Article  CAS  PubMed  Google Scholar 

  43. Varun CN, Venkataswamy MM, Ravikumar R, Nagaraju R, Debnath M, Varambally S, et al. Th17 and MAIT cell mediated inflammation in antipsychotic free schizophrenia patients. Schizophr Res. 2019;212:47–53.

    Article  PubMed  Google Scholar 

  44. Parrot T, Gorin J-B, Ponzetta A, Maleki KT, Kammann T, Emgård J, et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci Immunol. 2020;5:eabe1670.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Serriari NE, Eoche M, Lamotte L, Lion J, Fumery M, Marcelo P, et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol. 2014;176:266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho YN, Kee SJ, Kim T-J, Jin HM, Kim MJ, Jung HJ, et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J Immunol. 2014;193:3891–901.

  47. Pincikova T, Paquin-Proulx D, Moll M, Flodstrom-Tullberg M, Hjelte L, Sandberg JK. Severely impaired control of bacterial infections in a patient with cystic fibrosis defective in mucosal-associated invariant T cells. Chest. 2018;153:e93–e96.

    Article  PubMed  Google Scholar 

  48. Howson LJ, Awad W, von Borstel A, Lim HJ, McWilliam HEG, Sandoval-Romero ML, et al. Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1. Sci Immunol. 2020;5:eabc9492.

  49. Severance EG, Gressitt KL, Stallings CR, Origoni AE, Khushalani S, Leweke FM, et al. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res. 2013;148:130–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Barbuti M, Carvalho AF, Kohler CA, Murru A, Verdolini N, Guiso G, et al. Thyroid autoimmunity in bipolar disorder: a systematic review. J Affect Disord. 2017;221:97–106.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang HX, Xu YQ, Li YY, Lu MF, Shi SX, Ji JL, et al. Difference in proinflammatory cytokines produced by monocytes between patients with major depressive disorder and healthy controls. J Affect Disord. 2018;234:305–10.

    Article  CAS  PubMed  Google Scholar 

  52. Meyer U, Feldon J, Yee BK. A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull. 2009;35:959–72.

    Article  PubMed  Google Scholar 

  53. Rousset CI, Kassem J, Olivier P, Chalon S, Gressens P, Saliba E. Antenatal bacterial endotoxin sensitizes the immature rat brain to postnatal excitotoxic injury. J Neuropathol Exp Neurol. 2008;67:994–1000.

    Article  PubMed  Google Scholar 

  54. Huang Z, Wang J, Xu X, Wang H, Qiao Y, Chu WC, et al. Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity. Nat Microbiol. 2019;4:766–73.

    Article  CAS  PubMed  Google Scholar 

  55. Wolf AJ, Underhill DM. Peptidoglycan recognition by the innate immune system. Nat Rev Immunol. 2018;18:243–54.

    Article  CAS  PubMed  Google Scholar 

  56. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:407–20.

    Article  PubMed  CAS  Google Scholar 

  57. Uhde M, Ajamian M, Caio G, De Giorgio R, Indart A, Green PH, et al. Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut. 2016;65:1930–7.

    Article  CAS  PubMed  Google Scholar 

  58. Laman JD, t Hart BA, Power C, Dziarski R. Bacterial peptidoglycan as a driver of chronic brain inflammation. Trends Mol Med. 2020;26:670–82.

    Article  CAS  PubMed  Google Scholar 

  59. Stone WS, Cai B, Liu X, Grivel MMR, Yu G, Xu Y, et al. Association between the duration of untreated psychosis and selective cognitive performance in community-dwelling individuals with chronic untreated schizophrenia in rural China. JAMA Psychiatry. 2020;77:1116–26.

    Article  PubMed  Google Scholar 

  60. D’Mello C, Swain MG. Immune-to-brain communication pathways in inflammation-associated sickness and depression. Curr Top Behav Neurosci. 2017;31:73–94.

    Article  PubMed  CAS  Google Scholar 

  61. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharm Ther. 2011;130:226–38.

    Article  CAS  Google Scholar 

  62. Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: insights from human and rodent studies. Neuroscience. 2016;321:138–62.

    Article  PubMed  CAS  Google Scholar 

  63. Pape K, Tamouza R, Leboyer M, Zipp F. Immunoneuropsychiatry – novel perspectives on brain disorders. Nat Rev Neurol. 2019;15:317–28.

    Article  PubMed  Google Scholar 

  64. Severance EG, Yolken RH. From infection to the microbiome: an evolving role of microbes in schizophrenia. Curr Top Behav Neurosci. 2020;44:67–84.

    Article  CAS  PubMed  Google Scholar 

  65. Nimgaonkar VL, Prasad KM, Chowdari KV, Severance EG, Yolken RH. The complement system: a gateway to gene-environment interactions in schizophrenia pathogenesis. Mol Psychiatry. 2017;22:1554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Presumey J, Bialas AR, Carroll MC. Complement system in neural synapse elimination in development and disease. Adv Immunol. 2017;135:53–79.

    Article  CAS  PubMed  Google Scholar 

  67. Nielsen PR, Benros ME, Mortensen PB. Hospital contacts with infection and risk of schizophrenia: a population-based cohort study with linkage of Danish national registers. Schizophr Bull. 2014;40:1526–32.

    Article  PubMed  Google Scholar 

  68. Juncal-Ruiz M, Riesco-Davila L, Vazquez-Bourgon J, Ortiz-Garcia de la Foz V, Mayoral-Van Son J, Ayesa-Arriola R, et al. Expression and functionality study of 9 toll-like receptors in 33 drug-naive non-affective first episode psychosis individuals: a 3-month study. Int J Mol Sci. 2020;21:6106.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 81771471), Natural Science Basic Research Project of Natural Science Fund of Shaanxi Province (2016JQ8026), Outstanding Youth Science Foundation project of National Natural Science Foundation of China (82022023), Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaotong University (No. XJTU1AF-CRF-2016-005), and Key Research and Development Program of Shaanxi (No. 2020ZDLSF02-10).

Author information

Authors and Affiliations

Authors

Contributions

XM, FZ, and WW designed the project. ZY, QM, BZ, XH, FG, and LQ recruited volunteers and collected samples for the study. YG and ZY performed research. YG and YF performed the data analyses. YG and FZ interpreted the results and wrote the paper. All authors contributed to revision of the paper.

Corresponding authors

Correspondence to Xiancang Ma or Feng Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Fan, Y., Yang, Z. et al. Systems biological assessment of altered cytokine responses to bacteria and fungi reveals impaired immune functionality in schizophrenia. Mol Psychiatry 27, 1205–1216 (2022). https://doi.org/10.1038/s41380-021-01362-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01362-0

Search

Quick links