Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute myeloid leukemia

TP53 deficiency permits chromosome abnormalities and karyotype heterogeneity in acute myeloid leukemia

Abstract

Abnormal karyotypes are common in cancer cells and frequently observed in acute myeloid leukemia (AML), in which complex karyotype aberrations are associated with poor prognosis. How exactly abnormal karyotypes arise and are propagated in AML is unclear. TP53 mutations and deletions are frequent in complex karyotype AML, suggesting a role of TP53 alterations in the development of chromosome abnormalities. Here, we generated isogenic TP53-knockout versions of the euploid AML cell line EEB to investigate the impact of TP53 on karyotype stability. We show that chromosome abnormalities spontaneously arise in TP53-deficient cells. Numerical aneuploidy could, to some extent, be propagated in a TP53-proficient setting, indicating that it does not necessarily trigger TP53 activation. In contrast, tolerance to structural chromosome aberrations was almost entirely restricted to TP53-knockout clones, all of which were able to continue proliferation in the presence of damaged DNA. Mechanistically, as a source of chromosome aberrations, limited numerical but not structural chromosomal instability was tolerated by TP53-wildtype cells. In contrast, structural instability was found only in TP53-knockout cells. Together, in myeloid cells TP53 loss allows for the development of complex karyotype aberrations and karyotype heterogeneity by perpetuation of chromosome segregation errors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013;155:948–62.

    Article  CAS  Google Scholar 

  2. Grimwade BD, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998;92:2322–33.

    Article  CAS  Google Scholar 

  3. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukaemia: determination of prognostic significance of rarer recurring chromosomal abnormalities amongst 5,876 younger adult patients treated in the UK Medical Research Council trials. Blood. 2010;116:354–65.

    Article  CAS  Google Scholar 

  4. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  Google Scholar 

  5. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98:1312–20.

    Article  CAS  Google Scholar 

  6. Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia. 2008;22:1539–41.

    Article  CAS  Google Scholar 

  7. Rücker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119:2114–21.

    Article  Google Scholar 

  8. Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia. 2017;31:705–11.

    Article  CAS  Google Scholar 

  9. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  Google Scholar 

  10. Bochtler T, Stölzel F, Heilig CE, Kunz C, Mohr B, Jauch A, et al. Clonal heterogeneity as detected by metaphase karyotyping is an indicator of poor prognosis in acute myeloid leukemia. J Clin Oncol. 2013;31:3898–905.

    Article  Google Scholar 

  11. Thompson SL, Compton DA. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol. 2010;188:369–81.

    Article  CAS  Google Scholar 

  12. Bunz F, Fauth C, Speicher MR, Dutriaux A, Sedivy JM, Kinzler KW, et al. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 2002;62:1129–33.

    CAS  PubMed  Google Scholar 

  13. Soto M, Raaijmakers JA, Bakker B, Spierings DCJ, Lansdorp PM, Foijer F, et al. p53 prohibits propagation of chromosome segregation errors that produce structural aneuploidies. Cell Rep. 2017;19:2423–31.

    Article  CAS  Google Scholar 

  14. Santaguida S, Richardson A, Iyer DR, M’Saad O, Zasadil L, Knouse KA, et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev Cell. 2017;41:638–51.

    Article  CAS  Google Scholar 

  15. Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci USA. 2001;98:13361–6.

    Article  CAS  Google Scholar 

  16. Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BS, et al. Constitutional aneuploidy in the normal human brain. J Neurosci. 2005;25:2176–80.

    Article  CAS  Google Scholar 

  17. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44:642–50.

    Article  CAS  Google Scholar 

  18. Forsberg LA, Rasi C, Malmqvist N, Davies H, Pasupulati S, Pakalapati G, et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat Genet. 2014;46:624–8.

    Article  CAS  Google Scholar 

  19. Gronroos E, López-García C. Tolerance of chromosomal instability in cancer: mechanisms and therapeutic opportunities. Cancer Res. 2018;78:6529–35.

    Article  CAS  Google Scholar 

  20. Kawano-Yamamoto C, Muroi K, Nagatsuka Y, Higuchi M, Kikuchi S, Nagai T, et al. Establishment and characterization of a new erythroblastic leukemia cell line, EEB: phosphatidylglucoside-mediated erythroid differentiation and apoptosis. Leuk Res. 2006;30:829–39.

    Article  CAS  Google Scholar 

  21. Ran FA, Hsu PD, Wright J, Agarwala V, Scott D, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  Google Scholar 

  22. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:148.

    Article  Google Scholar 

  23. Geigl JB, Uhrig S, Speicher MR. Multiplexfluorescence in situ hybridization for chromosome karyotyping. Nat Protoc. 2006;1:1172–84.

    Article  CAS  Google Scholar 

  24. Lengauer C, Kinzler K, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;10:623–7.

    Article  Google Scholar 

  25. Bayani J, Paderova J, Murphy J, Rosen B, Zielenska M, Squire JA. Distinct patterns of structural and numerical chromosomal instability characterize sporadic ovarian cancer. Neoplasia. 2008;10:1057–65.

    Article  CAS  Google Scholar 

  26. Thomas J, Kornberg RD. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci USA. 1975;72:2626–30.

    Article  CAS  Google Scholar 

  27. Uetake Y, Sluder G. Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol. 2010;20:1666–71.

    Article  CAS  Google Scholar 

  28. Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z, et al. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci USA. 2010;107:14188–93.

    Article  CAS  Google Scholar 

  29. Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH. Chromosome segregation errors as a cause of DNA damage and Structural Chromosome Aberrations. Science. 2011;333:1895–8.

    Article  CAS  Google Scholar 

  30. Fenaux P, Preudhomme C, Quiquandon I, Jonveaux P, Laï JL, Vanrumbeke M, et al. Mutations of the P53 gene in acute myeloid leukaemia. Br J Haematol. 1992;80:178–83.

    Article  CAS  Google Scholar 

  31. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97:3589–95.

    Article  CAS  Google Scholar 

  32. Seifert H, Mohr B, Thiede C, Oelschlägel U, Schäkel U, Illmer T, et al. The prognostic impact of17p (p53) deletion in 2272 adults with acute myeloid leukemia. Leukemia. 2009;23:656–63.

    Article  CAS  Google Scholar 

  33. Bowen D, Groves MJ, Burnett AK, Patel Y, Allen C, Green C, et al. TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia. 2009;23:203–6.

    Article  CAS  Google Scholar 

  34. Santaguida S, Amon A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol. 2015;16:473–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Brigitte Schoell for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and A.K. designed the experiments and analyzed the data; A.C., C.S., I.J., T.B., and A.J. performed the experiments; and A.C. and A.K. wrote the manuscript.

Corresponding author

Correspondence to Alwin Krämer.

Ethics declarations

Conflict of interest

This work was supported by grants of the Deutsche Forschungs gemeinschaft (DFG, KR 1981/4-1), the Wilhelm Sander-Stiftung, and a University of Heidelberg research trust to AK. The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazzola, A., Schlegel, C., Jansen, I. et al. TP53 deficiency permits chromosome abnormalities and karyotype heterogeneity in acute myeloid leukemia. Leukemia 33, 2619–2627 (2019). https://doi.org/10.1038/s41375-019-0550-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0550-5

This article is cited by

Search

Quick links