Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peri-extubation settings in preterm neonates: a systematic review and meta-analysis

Abstract

Objective

To systematically review: 1) peri-extubation settings; and 2) association between peri-extubation settings and outcomes in preterm neonates.

Study Design

In this systematic review, studies were eligible if they reported patient-data on peri-extubation settings (objective 1) and/or evaluated peri-extubation levels in relation to clinical outcomes (objective 2). Data were meta-analyzed when appropriate using random-effects model.

Results

Of 9681 titles, 376 full-texts were reviewed and 101 included. The pooled means of peri-extubation settings were summarized. For objective 2, three experimental studies were identified comparing post-extubation CPAP levels. Meta-analyses revealed lower odds for treatment failure [pooled OR 0.46 (95% CI 0.27–0.76); 3 studies, 255 participants] but not for re-intubation [pooled OR 0.66 (0.22–1.97); 3 studies, 255 participants] with higher vs. lower CPAP.

Conclusions

Summary of peri-extubation settings may guide clinicians in their own practices. Higher CPAP levels may reduce extubation failure, but more data on peri-extubation settings that optimize outcomes are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA Diagram.
Fig. 2: Forest plots of meta-analyses of outcomes for Higher vs. Lower post-extubation CPAP.

Similar content being viewed by others

Data availability

Data extracted from eligible studies used to generate summaries are provided in the Supplementary File (Table S.9). Additional data are available from authors upon request.

References

  1. Keszler M, Sant’Anna G. Mechanical ventilation and bronchopulmonary dysplasia. Clin Perinatol. 2015;42:781–96.

    Article  PubMed  Google Scholar 

  2. Schmölzer GM, Kumar M, Pichler G, Aziz K, O’Reilly M, Cheung PY. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. Bmj 2013;347:f5980–f5980.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abdel-Latif ME, Davis PG, Wheeler KI, De Paoli AG, Dargaville PA. Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2021;5:Cd011672.

    PubMed  Google Scholar 

  4. Chawla S, Natarajan G, Shankaran S, Carper B, Brion LP, Keszler M, et al. Markers of successful extubation in extremely preterm infants, and morbidity after failed extubation. J Pediatr. 2017;189:113–9.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Manley BJ, Doyle LW, Owen LS, Davis PG. Extubating extremely preterm infants: predictors of success and outcomes following failure. J Pediatr. 2016;173:45–9.

    Article  PubMed  Google Scholar 

  6. Ramaswamy VV, Bandyopadhyay T, Nanda D, Bandiya P, More K, Oommen VI, et al. Efficacy of noninvasive respiratory support modes as postextubation respiratory support in preterm neonates: A systematic review and network meta-analysis. Pediatr Pulmonol. 2020;55:2924–39.

    Article  PubMed  Google Scholar 

  7. Ferguson KN, Roberts CT, Manley BJ, Davis PG. Interventions to improve rates of successful extubation in preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2017;171:165–74.

    Article  PubMed  Google Scholar 

  8. Shalish W, Latremouille S, Papenburg J, Sant’Anna GM. Predictors of extubation readiness in preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2019;104:F89–f97.

    Article  PubMed  Google Scholar 

  9. Mukerji A, Shah PS, Shivananda S, Yee W, Read B, Minski J, et al. Survey of noninvasive respiratory support practices in Canadian neonatal intensive care units. Acta Paediatr. 2017;106:387–93.

    Article  PubMed  Google Scholar 

  10. Beltempo M, Isayama T, Vento M, Lui K, Kusuda S, Lehtonen L, et al. Respiratory management of extremely preterm infants: an international survey. Neonatology 2018;114:28–36.

    Article  PubMed  Google Scholar 

  11. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kidman AM, Manley BJ, Boland RA, Malhotra A, Donath SM, Beker F, et al. Higher versus lower nasal continuous positive airway pressure for extubation of extremely preterm infants in Australia (ÉCLAT): a multicentre, randomised, superiority trial. Lancet Child Adolesc Health. 2023;7:844–51.

    Article  PubMed  Google Scholar 

  13. Abu Jawdeh EG, Pant A, Gabrani A, Cunningham MD, Raffay TM, Westgate PM. Extubation readiness in preterm infants: evaluating the role of monitoring intermittent hypoxemia. Children. 2021;8:18.

    Article  Google Scholar 

  14. Al Mandhari H, Finelli M, Chen S, Tomlinson C, Nonoyama ML. Effects of an extubation readiness test protocol at a tertiary care fully outborn neonatal intensive care unit. Can J Respir Ther. 2019;55:81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Al-Hathlol K, Bin Saleem N, Khawaji M, Al Saif S, Abdelhakim I, Al-Hathlol B, et al. Early extubation failure in very low birth weight infants: Clinical outcomes and predictive factors. J Neonatal-Perinat Med. 2017;10:163–9.

    Article  CAS  Google Scholar 

  16. Ali YAH, Seshia MM, Ali E, Alvaro R. Noninvasive high-frequency oscillatory ventilation: a retrospective chart review. Am J Perinatol. 2022;39:666–70.

    Article  PubMed  Google Scholar 

  17. Alkan Ozdemir S, Arun Ozer E, Ilhan O, Sutcuoglu S. Impact of targeted-volume ventilation on pulmonary dynamics in preterm infants with respiratory distress syndrome. Pediatr Pulmonol. 2017;52:213–6.

    Article  PubMed  Google Scholar 

  18. Al-Matary A, Alotaiby S, Alenizi S. Outcomes and factors associated with extubation failure in preterm infants. J Clin Neonatol. 2022;11:97–101.

    Article  Google Scholar 

  19. Amaro CM, Bello JA, Jain D, Ramnath A, D’Ugard C, Vanbuskirk S, et al. Early caffeine and weaning from mechanical ventilation in preterm infants: a randomized. Placebo-Controlled Trial J Pediatrics. 2018;196:52–7.

    CAS  Google Scholar 

  20. Barrington KJ. Extubation failure in the very preterm infant. J de Pediatr. 2009;85:375–7.

    Article  Google Scholar 

  21. Bhat P, Chowdhury O, Shetty S, Hannam S, Rafferty GF, Peacock J, et al. Volume-targeted versus pressure-limited ventilation in infants born at or near term. Eur J Pediatrics. 2016;175:89–95.

    Article  Google Scholar 

  22. Buzzella B, Claure N, D’Ugard C, Bancalari E. A randomized controlled trial of two nasal continuous positive airway pressure levels after extubation in preterm infants. J Pediatrics. 2014;164:46–51.

    Article  Google Scholar 

  23. Campbell DM, Shah PS, Shah V, Kelly EN. Nasal continuous positive airway pressure from high flow cannula versus Infant Flow for Preterm infants. J Perinatol. 2006;26:546–9.

    Article  CAS  PubMed  Google Scholar 

  24. Chawla S, Natarajan G, Gelmini M, Kazzi SN. Role of spontaneous breathing trial in predicting successful extubation in premature infants. Pediatr Pulmonol. 2013;48:443–8.

    Article  PubMed  Google Scholar 

  25. Chen YH, Lin HL, Sung YH, Hsu JF, Chu SM. Analysis of predictive parameters for extubation in very low birth weight preterm infants. Pediatrics Neonatol. 2022;14:14–279.

    CAS  Google Scholar 

  26. Cheng Z, Dong Z, Zhao Q, Zhang J, Han S, Gong J, et al. A prediction model of extubation failure risk in preterm infants. Front Pediatrics. 2021;9:693320.

    Article  Google Scholar 

  27. Chowdhury O, Patel DS, Hannam S, Lee S, Rafferty GF, Peacock JL, et al. Randomised trial of volume-targeted ventilation versus pressure-limited ventilation in acute respiratory failure in prematurely born infants. Neonatology 2013;104:290–4.

    Article  PubMed  Google Scholar 

  28. Colaizy TT, Kummet GJ, Kummet CM, Klein JM. Noninvasive Neurally Adjusted Ventilatory Assist in Premature Infants Postextubation. Am J Perinatol. 2017;34:593–8.

    Article  PubMed  Google Scholar 

  29. Collins CL, Holberton JR, Barfield C, Davis PG A randomized controlled trial to compare heated humidified high-flow nasal cannulae with nasal continuous positive airway pressure postextubation in premature infants. J Pediatrics. 162:949-54.e1.

  30. Currie A, Patel DS, Rafferty GF, Greenough A. Prediction of extubation outcome in infants using the tension time index. Arch Dis Child Fetal Neonatal Ed. 2011;96:F265–9.

    Article  PubMed  Google Scholar 

  31. Czernik C, Schmalisch G, Buhrer C, Proquitte H. Weaning of neonates from mechanical ventilation by use of nasopharyngeal high-frequency oscillatory ventilation: a preliminary study. J Matern-Fetal Neonatal Med. 2012;25:374–8.

    Article  CAS  PubMed  Google Scholar 

  32. Dani C, Fontanelli G, Lori I, Favelli F, Poggi C. Heliox non-invasive ventilation for preventing extubation failure in preterm infants. J Matern-Fetal Neonatal Med. 2013;26:603–7.

    Article  PubMed  Google Scholar 

  33. Dassios T, Williams E, Ambulkar H, Shetty S, Hickey A, Greenough A. Tidal volumes and outcome of extubation in mechanically ventilated premature infants. Am J Perinatol. 2020;37:204–9.

    Article  PubMed  Google Scholar 

  34. Davis P, Jankov R, Doyle L, Henschke P. Randomised, controlled trial of nasal continuous positive airway pressure in the extubation of infants weighing 600 to 1250 g. Arch Dis Child Fetal Neonatal Ed. 1998;79:F54–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dimitriou G, Fouzas S, Vervenioti A, Tzifas S, Mantagos S. Prediction of extubation outcome in preterm infants by composite extubation indices. Pediatr Crit Care Med. 2011;12:e242–9.

    Article  PubMed  Google Scholar 

  36. Dimitriou G, Greenough A, Endo A, Cherian S, Rafferty GF. Prediction of extubation failure in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2002;86:F32–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dimitriou G, Greenough A, Griffin F, Chan V. Synchronous intermittent mandatory ventilation modes compared with patient triggered ventilation during weaning. Arch Dis Child Fetal Neonatal Ed. 1995;72:F188–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dryer RA, Salem A, Saroha V, Greenberg RG, Rysavy MA, Chawla S, et al. Evaluation and validation of a prediction model for extubation success in very preterm infants. J Perinatol. 2022;42:1674–9.

    Article  PubMed  Google Scholar 

  39. Dur DJ, Asselin JM, Hudak ML, Aschner JL, McArtor RD, et al. Early high-frequency oscillatory ventilation versus synchronized intermittent mandatory ventilation in very low birth weight infants: a pilot study of two ventilation protocols. J Perinatol. 2001;21:221–9.

    Article  Google Scholar 

  40. Elsetouhi ME, Elsayed LM, El-Hameed Abdo AA, Shehab MM. Predictors of extubation failure in preterm infants with respiratory distress: the role of spontaneous breathing trial. J Cardiovascular Dis Res. 2021;12:837–43.

    Google Scholar 

  41. Erdemir A, Kahramaner Z, Turkoglu E, Cosar H, Sutcuoglu S, Ozer EA. Effects of synchronized intermittent mandatory ventilation versus pressure support plus volume guarantee ventilation in the weaning phase of preterm infants. Pediatr Crit Care Med. 2014;15:236–41.

    Article  PubMed  Google Scholar 

  42. Fischer HS, Bohlin K, Bührer C, Schmalisch G, Cremer M, Reiss I, et al. Nasal high-frequency oscillation ventilation in neonates: a survey in five European countries. Eur J Pediatr. 2015;174:465–71.

    Article  PubMed  Google Scholar 

  43. Fok TF, Kew J, Loftus WK, Ng PC, Set PA, Wong W, et al. Clinical prediction of post-extubation radiological changes of the chest in newborn infants. Acta Paediatrica. 1998;87:88–92.

    Article  CAS  PubMed  Google Scholar 

  44. Friedlich P, Lecart C, Posen R, Ramicone E, Chan L, Ramanathan R. A randomized trial of nasopharyngeal-synchronized intermittent mandatory ventilation versus nasopharyngeal continuous positive airway pressure in very low birth weight infants after extubation. J Perinatol. 1999;19:413–8.

    Article  CAS  PubMed  Google Scholar 

  45. Guler F, Calisir H. The effect of positioning on adaptation to spontaneous breathing in premature infants after weaning from mechanical ventilation: A randomized controlled trial. J Pediatr Res. 2020;7:102–9.

    Article  Google Scholar 

  46. Guy B, Dye ME, Richards L, Guthrie SO, Hatch LD 3rd. Association of time of day and extubation success in very low birthweight infants: a multicenter cohort study. J Perinatol. 2021;41:2532–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hari HA, Al Riyami B, Khan A, Nonoyama M, Rizvi SGA. Risk factors of extubation failure in intubated preterm infants at a tertiary care hospital in Oman. Sultan Qaboos Univ Med J. 2022;22:247–52.

    Google Scholar 

  48. He F, Wu D, Sun Y, Lin Y, Wen X, Cheng ASK. Predictors of extubation outcomes among extremely and very preterm infants: a retrospective cohort study. J de Pediatr. 2022;98:648–54.

    Article  Google Scholar 

  49. Hermeto F, Martins BM, Ramos JR, Bhering CA, Sant’Anna GM. Incidence and main risk factors associated with extubation failure in newborns with birth weight < 1,250 grams. J Pediatr (Rio J). 2009;85:397–402.

    Article  PubMed  Google Scholar 

  50. Holleman-Duray D, Kaupie D, Weiss MG. Heated humidified high-flow nasal cannula: use and a neonatal early extubation protocol. J Perinatol. 2007;27:776–81.

    Article  CAS  PubMed  Google Scholar 

  51. Huang L, Mendler MR, Waitz M, Schmid M, Hassan MA, Hummler HD. Effects of synchronization during noninvasive intermittent mandatory ventilation in preterm infants with respiratory distress syndrome immediately after extubation. Neonatology 2015;108:108–14.

    Article  CAS  PubMed  Google Scholar 

  52. Hunt KA, Hunt I, Ali K, Dassios T, Greenough A. Prediction of extubation success using the diaphragmatic electromyograph results in ventilated neonates. J Perinat Med. 2020;48:609–14.

    Article  PubMed  Google Scholar 

  53. Iyer NP, Dickson J, Ruiz ME, Chatburn R, Beck J, Sinderby C, et al. Neural breathing pattern in newborn infants pre- and postextubation. Acta Paediatrica. 2017;106:1928–33. 1928-33

    Article  PubMed  Google Scholar 

  54. Janjindamai W, Pasee S, Thatrimontrichai A. The optimal predictors of readiness for extubation in low birth weight infants. J Med Assoc Thail. 2017;100:427–34.

    Google Scholar 

  55. Kaczmarek J, Chawla S, Marchica C, Dwaihy M, Grundy L, Sant’Anna GM. Heart rate variability and extubation readiness in extremely preterm infants. Neonatology 2013;104:42–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kamlin CO, Davis PG, Argus B, Mills B, Morley CJ. A trial of spontaneous breathing to determine the readiness for extubation in very low birth weight infants: a prospective evaluation. Arch Dis Child Fetal Neonatal Ed. 2008;93:F305–6.

    Article  CAS  PubMed  Google Scholar 

  57. Kamlin CO, Davis PG, Morley CJ. Predicting successful extubation of very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2006;91:F180–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kavvadia V, Greenough A, Dimitriou G. Prediction of extubation failure in preterm neonates. Eur J Pediatrics. 2000;159:227–31.

    Article  CAS  Google Scholar 

  59. Kidman AM, Manley BJ, Bol RA, Davis PG, Bhatia R. Predictors and outcomes of extubation failure in extremely preterm infants. J Paediatrics Child Health. 2021;57:913–9.

    Article  Google Scholar 

  60. Latremouille S, Shalish W, Kanbar L, Lamer P, Rao S, Kearney RE, et al. The effects of nasal continuous positive airway pressure and high flow nasal cannula on heart rate variability in extremely preterm infants after extubation: A randomized crossover trial. Pediatr Pulmonol. 2019;54:788–96.

    Article  PubMed  Google Scholar 

  61. Lee BK, Shin SH, Jung YH, Kim EK, Kim HS. Comparison of NIV-NAVA and NCPAP in facilitating extubation for very preterm infants. BMC Pediatrics. 2019;19:298.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li J, Zhang J, Hao Q, Shen Z, Du Y, Chen H, et al. The impact of time interval between first extubation and reintubation on bronchopulmonary dysplasia or death in very low birth weight infants. Front Pediatrics. 2022;10:867767.

    Article  Google Scholar 

  63. Li Y, Wei Q, Zhao D, Mo Y, Yao L, Li L, et al. Non-invasive high-frequency oscillatory ventilation in preterm infants after extubation: a randomized, controlled trial. J Int Med Res. 2021;49:300060520984915.

    CAS  PubMed  Google Scholar 

  64. Manley BJ, Owen LS, Doyle LW, Andersen CC, Cartwright DW, Pritchard MA, et al. High-flow nasal cannulae in very preterm infants after extubation. N. Engl J Med. 2013;369:1425–33.

    Article  CAS  PubMed  Google Scholar 

  65. Mehta P, Berger J, Bucholz E, Bhandari V. Factors affecting nasal intermittent positive pressure ventilation failure and impact on bronchopulmonary dysplasia in neonates. J Perinatol. 2014;34:754–60.

    Article  CAS  PubMed  Google Scholar 

  66. Mohsen N, Nasef N, Ghanem M, Yeung T, Deekonda V, Ma C, et al. Accuracy of lung and diaphragm ultrasound in predicting successful extubation in extremely preterm infants: A prospective observational study. Pediatr Pulmonol. 2023;58:530–9.

    Article  PubMed  Google Scholar 

  67. Moretti C, Gizzi C, Papoff P, Lampariello S, Capoferri M, Calcagnini G, et al. Comparing the effects of nasal synchronized intermittent positive pressure ventilation (nSIPPV) and nasal continuous positive airway pressure (nCPAP) after extubation in very low birth weight infants. Early Hum Dev. 1999;56:167–77.

    Article  CAS  PubMed  Google Scholar 

  68. Khashaba MT, El-Mazahi MM, Nasef NA, Salam MA, Moussa NA. Volume guarantee ventilation in the weaning phase of preterm infants. Egyptian Pediatric Association. Gazette 2015;63:86–90.

    Google Scholar 

  69. Mukerji A, Razak A, Aggarwal A, Jacobi E, Musa M, Alwahab Z, et al. Early versus delayed extubation in extremely preterm neonates: a retrospective cohort study. J Perinatol. 2020;40:118–23.

    Article  CAS  PubMed  Google Scholar 

  70. O’Brien K, Campbell C, Brown L, Wenger L, Shah V. Infant flow biphasic nasal continuous positive airway pressure (BP- NCPAP) vs. infant flow NCPAP for the facilitation of extubation in infants’ <= 1,250 grams: a randomized controlled trial. BMC Pediatrics. 2012;12:43.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ohnstad MO, Stensvold HJ, Pripp AH, Tvedt CR, Jelsness-Jorgensen LP, Astrup H, et al. Predictors of extubation success: a population-based study of neonates below a gestational age of 26 weeks. BMJ Paediatrics Open. 2022;6:08.

    Article  Google Scholar 

  72. Kitsommart R, Kalyn A, Al-Saleem N, Janes M, Sant’Anna GM. Levels of nasal CPAP applied during the immediate postextubation phase: a randomized controlled pilot trial. e-Journal of Neonatology. Research. 2013;3:2–10.

    Google Scholar 

  73. Rallis D, Sathiyamurthy S, Deierl A, Atreja G, Chaban B, Banerjee J. Biphasic positive airway pressure prevented the reintubation of extremely preterm infants more effectively than continuous positive airway pressure. Acta Paediatrica. 2019;108:1725–6.

    Article  PubMed  Google Scholar 

  74. Ribeiro SNS, Fontes MJF, Bhandari V, Resende CB, Johnston C. Noninvasive Ventilation in Newborns <= 1,500 g after Tracheal Extubation: Randomized Clinical Trial. Am J Perinatol. 2017;34:1190–8.

    Article  PubMed  Google Scholar 

  75. Robles-Rubio CA, Kaczmarek J, Chawla S, Kovacs L, Brown KA, Kearney RE, et al. Automated analysis of respiratory behavior in extremely preterm infants and extubation readiness. Pediatr Pulmonol. 2015;50:479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Seth S, Saha B, Saha AK, Mukherjee S, Hazra A. Nasal HFOV versus nasal IPPV as a post-extubation respiratory support in preterm infants-a randomised controlled trial. Eur J Pediatrics. 2021;180:3151–60.

    Article  CAS  Google Scholar 

  77. Shefali-Patel D, Murthy V, Hannam S, Lee S, Rafferty GF, Greenough A. Randomised weaning trial comparing assist control to pressure support ventilation. Arch Dis Child Fetal Neonatal Ed. 2012;97:F429–33.

    Article  PubMed  Google Scholar 

  78. Soonsawad S, Swatesutipun B, Limrungsikul A, Nuntnarumit P. Heated humidified high-flow nasal cannula for prevention of extubation failure in preterm infants. Indian J Pediatrics. 2017;84:262–6.

    Article  Google Scholar 

  79. Thatrimontrichai A, Sirianansopa K, Janjindamai W, Dissaneevate S, Maneenil G. Comparison of endotracheal reintubation between nasal high-frequency oscillation and continuous positive airway pressure in neonates. Am J Perinatol. 2020;37:409–14.

    Article  PubMed  Google Scholar 

  80. Tooley J, Dyke M. Randomized study of nasal continuous positive airway pressure in the preterm infant with respiratory distress syndrome. Acta Paediatrica. 2003;92:1170–4.

    Article  CAS  PubMed  Google Scholar 

  81. van Velzen A, De Jaegere A, van der Lee J, van Kaam A. Feasibility of weaning and direct extubation from open lung high-frequency ventilation in preterm infants. Pediatr Crit Care Med. 2009;10:71–5.

    Article  PubMed  Google Scholar 

  82. Victor S, Roberts SA, Mitchell S, Aziz H, Lavender T. Biphasic positive airway pressure or continuous positive airway pressure: a randomized trial. Pediatrics 2016;138:e20154095.

    Article  PubMed  Google Scholar 

  83. Yengkhom R, Suryawanshi P, Gupta B, Deshp ES. Heated humidified high-flow nasal cannula vs. nasal continuous positive airway pressure for post-extubation respiratory support in preterm infants: a randomized controlled trial. J Tropical Pediatrics. 2021;67:fmaa082.

    Article  Google Scholar 

  84. Zhu X, Qi H, Feng Z, Shi Y, De Luca D. Noninvasive high-frequency oscillatory ventilation vs nasal continuous positive airway pressure vs nasal intermittent positive pressure ventilation as postextubation support for preterm neonates in china: a randomized clinical trial. JAMA Pediatrics. 2022;176:551–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bahgat E, El-Halaby H, Abdelrahman A, Nasef N, Abdel-Hady H. Sonographic evaluation of diaphragmatic thickness and excursion as a predictor for successful extubation in mechanically ventilated preterm infants. Eur J Pediatr. 2021;180:899–908.

    Article  PubMed  Google Scholar 

  86. Bhatia R, Carlisle HR, Armstrong RK, Kamlin COF, Davis PG, Tingay DG. Extubation generates lung volume inhomogeneity in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022;107:82–6.

    Article  PubMed  Google Scholar 

  87. Dassios T, Kaltsogianni O, Greenough A. Relaxation rate of the respiratory muscles and prediction of extubation outcome in prematurely born infants. Neonatology 2017;112:251–7.

    Article  PubMed  Google Scholar 

  88. Gupta D, Greenberg RG, Natarajan G, Jani S, Sharma A, Cotten M, et al. Respiratory setback associated with extubation failure in extremely preterm infants. Pediatr Pulmonol. 2021;56:2081–6.

    Article  PubMed  Google Scholar 

  89. Gupta S, Sinha SK, Donn SM. The effect of two levels of pressure support ventilation on tidal volume delivery and minute ventilation in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2009;94:F80–3.

    Article  CAS  PubMed  Google Scholar 

  90. Hoffman SB, Govindan RB, Johnston EK, Williams J, Schlatterer SD, du Plessis AJ. Autonomic markers of extubation readiness in premature infants. Pediatr Res. 2022;18:18–917.

    Google Scholar 

  91. Kanbar LJ, Shalish W, Onu CC, Latremouille S, Kovacs L, Keszler M, et al. Automated prediction of extubation success in extremely preterm infants: the APEX multicenter study. Pediatr Res. 2022;29:29.

    Google Scholar 

  92. Kanbar LJ, Shalish W, Robles-Rubio CA, Precup D, Brown K, Sant’Anna GM, et al. Correlation of clinical parameters with cardiorespiratory behavior in successfully extubated extremely preterm infants, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4431–4.

    PubMed  Google Scholar 

  93. Khalaf MN, Hurley JF, Bhandari V. A prospective controlled trial of albuterol aerosol delivered via metered dose inhaler-spacer device (MDI) versus jet nebulizer in ventilated preterm neonates. Am J Perinatol. 2001;18:169–74.

    Article  CAS  PubMed  Google Scholar 

  94. Khalid L, Al-Balushi S, Manoj N, Rather S, Johnson H, Strauss L, et al. Toward Optimal High Continuous Positive Airway Pressure as Postextubation Support in Preterm Neonates: A Retrospective Cohort Study. Am J Perinatol. 2022;1:01.

    Google Scholar 

  95. Latremouille S, Bhuller M, Shalish W, Sant’Anna G. Cardiorespiratory effects of NIV-NAVA, NIPPV, and NCPAP shortly after extubation in extremely preterm infants: A randomized crossover trial. Pediatr Pulmonol. 2021;56:3273–82.

    Article  PubMed  Google Scholar 

  96. Latremouille S, Bhuller M, Shalish W, Sant’Anna G. Cardiorespiratory measures shortly after extubation and extubation outcomes in extremely preterm infants. Pediatr Res. 2023;93:1687–93.

    Article  PubMed  Google Scholar 

  97. Morsy RS, Sedky Badawy MM, Said RN, Ali AA, Abuelhamd WA. A comparative study between postextubation of preterm neonates into high-flow nasal cannula versus nasal continuous positive airway pressure. Iranian J Neonatol. 2021;12:12–9.

  98. Muhsen W, Roy R. A comparative study of HHHFNC and NCPAP in preventing reintubation in extreme preterm infants born at less than 30-week gestation. J Matern-Fetal Neonatal Med. 2018;31:3197–200.

    Article  PubMed  Google Scholar 

  99. Park SJ, Bae MH, Jeong MH, Jeong SH, Lee N, Byun SY, et al. Risk factors and clinical outcomes of extubation failure in very early preterm infants: a single-center cohort study. BMC Pediatrics. 2023;23:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Peake M, Dillon P, Shaw NJ. Randomized trial of continuous positive airways pressure to prevent reventilation in preterm infants. Pediatr Pulmonol. 2005;39:247–50.

    Article  CAS  PubMed  Google Scholar 

  101. Plastina L, Gaertner VD, Waldmann AD, Thomann J, Bassler D, Ruegger CM. The DELUX study: development of lung volumes during extubation of preterm infants. Pediatr Res. 2022;92:242–8.

    Article  CAS  PubMed  Google Scholar 

  102. Shalish W, Kanbar L, Kovacs L, Chawla S, Keszler M, Rao S, et al. Assessment of extubation readiness using spontaneous breathing trials in extremely preterm neonates. JAMA Pediatrics. 2020;174:178–85.

    Article  PubMed  Google Scholar 

  103. Shalish W, Keszler M, Kovacs L, Chawla S, Latremouille S, Beltempo M, et al. Age at first extubation attempt and death or respiratory morbidities in extremely preterm infants. J Pediatrics. 2023;252:124-30.e3–130.e3.

    Article  Google Scholar 

  104. Spaggiari E, Amato M, Ricca OA, Corradini Zini L, Bianchedi I, Lugli L, et al. Can fraction of inspired oxygen predict extubation failure in preterm infants? Children. 2022;9:01.

    Article  Google Scholar 

  105. Spasojevic S, Doronjski A. Risk factors associated with failure of extubation in very-low-birth-weight newborns. J Matern-Fetal Neonatal Med. 2018;31:300–4.

    Article  PubMed  Google Scholar 

  106. Tana M, Lio A, Tirone C, Aurilia C, Tiberi E, Serrao F, et al. Extubation from high-frequency oscillatory ventilation in extremely low birth weight infants: a prospective observational study. BMJ Paediatrics Open. 2018;2:e000350.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Williams EE, Arattu Thodika FMS, Chappelow I, Chapman-Hatchett N, Dassios T, Greenough A. Diaphragmatic electromyography during a spontaneous breathing trial to predict extubation failure in preterm infants. Pediatr Res. 2022;92:1064–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yuan G, Liu H, Wu Z, Chen X. Evaluation of three non-invasive ventilation modes after extubation in the treatment of preterm infants with severe respiratory distress syndrome. J Perinatol. 2022;42:1238–43.

    Article  PubMed  Google Scholar 

  109. Kaczmarek J, Kamlin CO, Morley CJ, Davis PG, Sant’anna GM. Variability of respiratory parameters and extubation readiness in ventilated neonates. Arch Dis Child Fetal Neonatal Ed. 2013;98:F70–3.

    Article  PubMed  Google Scholar 

  110. Farhadi R, Lotfi HR, Alipour A, Nakhshab M, Ghaffari V, Hashemi SA. Comparison of two levels of pressure support ventilation on success of extubation in preterm neonates: a randomized clinical trial. Glob J Health Sci. 2015;8:240–7.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Courtney SE, Asselin JM. High-frequency jet and oscillatory ventilation for neonates: which strategy and when? Respir Care Clin N. Am. 2006;12:453–67.

    PubMed  Google Scholar 

  112. Bamat N, Fierro J, Mukerji A, Wright CJ, Millar D, Kirpalani H. Nasal continuous positive airway pressure levels for the prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2021;11:CD012778.

Download references

Funding

None specific to this study. Dr. Amit Mukerji is supported by a Research Early Career Award from Hamilton Health Sciences Foundation (2019-2024).

Author information

Authors and Affiliations

Authors

Contributions

Each listed author has met criteria for authorship requirements. AM devised the study concept. YN, SA, CR and NU performed study related data acquisition. YN and AM conducted the analyses. SD provided methodological feedback, including during analyses of data. YN and AM drafted the manuscript and all named authors provided revisions to and approved the final version of the manuscript.

Corresponding author

Correspondence to Amit Mukerji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, Y.K., Balushi, S.A., Robb, C. et al. Peri-extubation settings in preterm neonates: a systematic review and meta-analysis. J Perinatol 44, 257–265 (2024). https://doi.org/10.1038/s41372-024-01870-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-024-01870-1

Search

Quick links