Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antenatal Magnesium Sulfate and adverse gastrointestinal outcomes in Preterm infants—a systematic review and meta-analysis

Abstract

Introduction

To evaluate the effect of antenatal magnesium sulfate (MgSO4) on mortality and morbidity outcomes related to the gastrointestinal system (GI) in preterm infants.

Methods

Data sources: A systematic literature search was conducted in November 2022. PubMed, CINAHL Plus with Full Text (EBSCOhost), Embase (Elsevier), and CENTRAL (Ovid) were searched. There were 6695 references. After deduplication, 4332 remained. Ninety-nine full-text articles were assessed and forty four articles were included in the final analysis.

Study eligibility criteria

Randomized or quasi-randomized clinical trials and observational studies that evaluated at least one of the pre-specified outcomes were included. Preterm infants whose mothers were given antenatal MgSO4 were included and whose mothers did not receive antenatal MgSO4 were the comparators. The main outcomes and measures were: Necrotizing enterocolitis (NEC) (stage ≥ 2), surgical NEC, spontaneous intestinal perforation (SIP), feeding intolerance, time to reach full feeds, and GI-associated mortality.

Study appraisal and synthesis methods

A random-effects model meta-analysis was performed to yield pooled OR and its 95% CI for each outcome due to expected heterogeneity in the studies. The analysis for each predefined outcome was performed separately for adjusted and unadjusted comparisons. All included studies were assessed for methodological quality. The risk of bias was assessed using elements of the Cochrane Collaboration’s tool 2.0 and the Newcastle–Ottawa Scale for randomized controlled trials (RCTs) and non-randomized studies (NRS), respectively. The study findings were reported as per PRISMA guidelines.

Results

A total of thirty-eight NRS and six RCTs involving 51,466 preterm infants were included in the final analysis. There were no increased odds of stage ≥2 NEC, (NRS : n = 45,524, OR: 0.95; 95% CI: 0.84–1.08, I2- 5% & RCT’s: n = 5205 OR: 1.00; 95% CI: 0.89–1.12, I2- 0%), SIP (n = 34,186, OR: 1.22, 95% CI: 0.94–1.58, I2–30%), feeding intolerance (n = 414, OR: 1.06, 95% CI: 0.64–1.76, I2–12%) in infants exposed to antenatal MgSO4. On the contrary, the incidence of surgical NEC was significantly lower in MgSO4 exposure infants (n = 29,506 OR:0.74; 95% CI: 0.62–0.90, ARR: 0.47%). Studies assessing the effect on GI-related mortality were limited to make any conceivable conclusion. The certainty of evidence (CoE) for all outcomes was adjudged as ‘very low’ as per GRADE.

Conclusion

Antenatal magnesium sulfate did not increase the incidence of gastrointestinal-related morbidities or mortality in preterm infants. With the current evidence concerns, regarding the adverse effects of MgSO4 administration leading to NEC/SIP or GI-related mortality in preterm infants should not be a hurdle in its routine use in antenatal mothers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Forest plots for primary outcomes.
Fig. 3: Forest plots for various sub-group analysis.
Fig. 4: Adjusted Odds Ratio (aOR) analysis.
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data included in the analysis are available in public domain. The details including search strategy, list of excluded studies with reason for exclusion, risk of bias assessment and quality assessment of included studies are all available in the online supplementary file.

References

  1. Mittendorf R. Magnesium sulfate tocolysis: time to quit. Obstet Gynecol. 2007;109:1204–5.

    Article  PubMed  Google Scholar 

  2. Nelson KB, Grether JK. Can magnesium sulfate reduce the risk of cerebral palsy in very low birthweight infants? Pediatrics. 1995;95:263–9.

    Article  CAS  PubMed  Google Scholar 

  3. Costantine MM, Weiner SJ, Eunice Kennedy Shriver National Institute of Child H, Human Development Maternal-Fetal Medicine Units N. Effects of antenatal exposure to magnesium sulfate on neuroprotection and mortality in preterm infants: a meta-analysis. Obstet Gynecol. 2009;114:354–64.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zeng X, Xue Y, Tian Q, Sun R, An R. Effects and safety of magnesium sulfate on neuroprotection: a meta-analysis based on PRISMA guidelines. Medicine (Baltimore). 2016;95:e2451.

    Article  CAS  PubMed  Google Scholar 

  5. Committee Opinion No. 455. Magnesium sulfate before anticipated preterm birth for neuroprotection. Obstet Gynecol. 2010;115:669–71.

    Article  Google Scholar 

  6. WHO recommendations on interventions to improve preterm birth outcomes. Geneva, Switzerland: World Health Organization; 2015.

  7. Crowther CA, Middleton PF, Voysey M, Askie L, Duley L, Pryde PG, et al. Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: an individual participant data meta-analysis. PLoS Med. 2017;14:e1002398.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wilson A, Hodgetts-Morton VA, Marson EJ, Markland AD, Larkai E, Papadopoulou A, et al. Tocolytics for delaying preterm birth: a network meta-analysis (0924). Cochrane Database Syst Rev. 2022;8:CD014978.

    PubMed  Google Scholar 

  9. Duley L, Gulmezoglu AM, Henderson-Smart DJ, Chou D. Magnesium sulphate and other anticonvulsants for women with pre-eclampsia. Cochrane Database Syst Rev. 2010;2010:CD000025.

    PubMed  PubMed Central  Google Scholar 

  10. Cruikshank DP, Pitkin RM, Reynolds WA, Williams GA, Hargis GK. Effects of magnesium sulfate treatment on perinatal calcium metabolism. I. Maternal and fetal responses. Am J Obstet Gynecol. 1979;134:243–9.

    Article  CAS  PubMed  Google Scholar 

  11. Lu JF, Nightingale CH. Magnesium sulfate in eclampsia and pre-eclampsia: pharmacokinetic principles. Clin Pharmacokinet. 2000;38:305–14.

    Article  CAS  PubMed  Google Scholar 

  12. Santafe MM, Garcia N, Lanuza MA, Tomas M, Besalduch N, Tomas J. Presynaptic muscarinic receptors, calcium channels, and protein kinase C modulate the functional disconnection of weak inputs at polyinnervated neonatal neuromuscular synapses. J Neurosci Res. 2009;87:1195–206.

    Article  CAS  PubMed  Google Scholar 

  13. Riaz M, Porat R, Brodsky NL, Hurt H. The effects of maternal magnesium sulfate treatment on newborns: a prospective controlled study. J Perinatol. 1998;18:449–54.

    CAS  PubMed  Google Scholar 

  14. Rantonen T, Kaapa P, Jalonen J, Ekblad U, Peltola O, Valimaki I, et al. Antenatal magnesium sulphate exposure is associated with prolonged parathyroid hormone suppression in preterm neonates. Acta Paediatr. 2001;90:278–81.

    Article  CAS  PubMed  Google Scholar 

  15. Malaeb SN, Rassi AI, Haddad MC, Seoud MA, Yunis KA. Bone mineralization in newborns whose mothers received magnesium sulphate for tocolysis of premature labour. Pediatr Radio. 2004;34:384–6.

    Article  Google Scholar 

  16. Mehta R, Petrova A. Intrapartum magnesium sulfate exposure attenuates neutrophil function in preterm neonates. Biol Neonate. 2006;89:99–103.

    Article  CAS  PubMed  Google Scholar 

  17. Gordon PV, Price WA, Stiles AD, Rutledge JC. Early postnatal dexamethasone diminishes transforming growth factor alpha localization within the ileal muscularis propria of newborn mice and extremely low-birth-weight infants. Pediatr Dev Pathol. 2001;4:532–7.

    Article  CAS  PubMed  Google Scholar 

  18. Gordon PV, Paxton JB, Herman AC, Carlisle EM, Fox NS. Igf-I accelerates ileal epithelial cell migration in culture and newborn mice and may be a mediator of steroid-induced maturation. Pediatr Res. 2004;55:34–41.

    Article  CAS  PubMed  Google Scholar 

  19. Iams J. CR, In: Creasy RK RR, Iams J, Lockwood, C MTe. Preterm labor and delivery. Maternal-Fetal Medicine: Principles and Practice. 2004. pp 623–61.

  20. Havranek T, Ashmeade TL, Afanador M, Carver JD. Effects of maternal magnesium sulfate administration on intestinal blood flow velocity in preterm neonates. Neonatology. 2011;100:44–9.

    Article  CAS  PubMed  Google Scholar 

  21. Gursoy T, Imamoglu EY, Ovali F, Karatekin G. Effects of antenatal magnesium exposure on intestinal blood flow and outcome in preterm neonates. Am J Perinatol. 2015;32:1064–9.

    Article  PubMed  Google Scholar 

  22. Fang S, Kempley ST, Gamsu HR. Prediction of early tolerance to enteral feeding in preterm infants by measurement of superior mesenteric artery blood flow velocity. Arch Dis Child Fetal Neonatal Ed. 2001;85:F42–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robel-Tillig E, Knupfer M, Pulzer F, Vogtmann C. Blood flow parameters of the superior mesenteric artery as an early predictor of intestinal dysmotility in preterm infants. Pediatr Radio. 2004;34:958–62.

    Article  Google Scholar 

  24. Maruyama K, Koizumi T, Tomomasa T, Morikawa A. Intestinal blood-flow velocity in uncomplicated preterm infants during the early neonatal period. Pediatr Radio. 1999;29:472–7.

    Article  CAS  Google Scholar 

  25. Coombs RC, Morgan ME, Durbin GM, Booth IW, McNeish AS. Abnormal gut blood flow velocities in neonates at risk of necrotising enterocolitis. J Pediatr Gastroenterol Nutr. 1992;15:13–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kempley ST, Gamsu HR. Superior mesenteric artery blood flow velocity in necrotising enterocolitis. Arch Dis Child. 1992;67:793–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rattray BN, Kraus DM, Drinker LR, Goldberg RN, Tanaka DT, Cotten CM. Antenatal magnesium sulfate and spontaneous intestinal perforation in infants less than 25 weeks gestation. J Perinatol. 2014;34:819–22.

    Article  CAS  PubMed  Google Scholar 

  28. Kamyar M, Clark EA, Yoder BA, Varner MW, Manuck TA. Antenatal magnesium sulfate, necrotizing enterocolitis, and death among neonates <28 weeks gestation. AJP Rep. 2016;6:e148–54.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shalabi M, Mohamed A, Lemyre B, Aziz K, Faucher D, Shah PS, et al. Antenatal exposure to magnesium sulfate and spontaneous intestinal perforation and necrotizing enterocolitis in extremely preterm neonates. Am J Perinatol. 2017;34:1227–33.

    Article  PubMed  Google Scholar 

  30. Wiswell TE, Caddell JL, Graziani LJ, Kornhauser MS, Spitzer AR. Maternally-administered magne- sium sulfate (MgSO4) decreases the incidence of severe necrotizing enterocolitis (NEC) in preterm infants: a prospective study. Pediatr Res. 1996;39:1501.

    Article  Google Scholar 

  31. Mikhael M, Bronson C, Zhang L, Curran M, Rodriguez H, Bhakta KY. Lack of evidence for time or dose relationship between antenatal magnesium sulfate and intestinal injury in extremely preterm neonates. Neonatology. 2019;115:371–8.

    Article  CAS  PubMed  Google Scholar 

  32. Shepherd E, Salam RA, Manhas D, Synnes A, Middleton P, Makrides M, et al. Antenatal magnesium sulphate and adverse neonatal outcomes: a systematic review and meta-analysis. PLoS Med. 2019;16:e1002988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am. 1986;33:179–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyer CL, Payne NR, Roback SA. Spontaneous, isolated intestinal perforations in neonates with birth weight less than 1000 g not associated with necrotizing enterocolitis. J Pediatr Surg. 1991;26:714–7.

    Article  CAS  PubMed  Google Scholar 

  36. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins J, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10:ED000142.

    PubMed  Google Scholar 

  37. Wells G, Shea B, O’Connell D, Peterson J, Welch v, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2012.

  38. Schunemann HJ. GRADE: from grading the evidence to developing recommendations. A description of the system and a proposal regarding the transferability of the results of clinical research to clinical practice. Z Evid Fortbild Qual Gesundh. 2009;103:391–400.

    Google Scholar 

  39. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Crowther CA, Hiller JE, Doyle LW, Haslam RR. Effect of magnesium sulfate given for neuroprotection before preterm birth: a randomized controlled trial. Jama. 2003;290:2669–76.

    Article  CAS  PubMed  Google Scholar 

  41. Gupta NGR, Gupta A, Garg R, Mishra S. Magnesium sulfate for fetal neuroprotection in women at risk of preterm birth: analysis of its effect on cerebral palsy. J South Asian Feder Obst Gynae. 2021;13:90–3.

    Article  Google Scholar 

  42. Marret S, Marpeau L, Zupan-Simunek V, Eurin D, Leveque C, Hellot M-F, et al. Magnesium sulphate given before very-preterm birth to protect infant brain: the randomised controlled PREMAG trial*. Bjog. 2007;114:310–8.

    Article  CAS  PubMed  Google Scholar 

  43. Paradisis M, Osborn DA, Evans N, Kluckow M. Randomized controlled trial of magnesium sulfate in women at risk of preterm delivery-neonatal cardiovascular effects. J Perinatol. 2012;32:665–70.

    Article  CAS  PubMed  Google Scholar 

  44. Rouse DJ, Hirtz DG, Thom E, Varner MW, Spong CY, Mercer BM, et al. A randomized, controlled trial of magnesium sulfate for the prevention of cerebral palsy. N Engl J Med. 2008;359:895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wolf HT, Brok J, Henriksen TB, Greisen G, Salvig JD, Pryds O, et al. Antenatal magnesium sulphate for the prevention of cerebral palsy in infants born preterm: a double-blind, randomised, placebo-controlled, multi-centre trial. BJOG. 2020;127:1217–25.

    Article  CAS  PubMed  Google Scholar 

  46. de Veciana M, Porto M, Major CA, Barke JI. Tocolysis in advanced preterm labor: impact on neonatal outcome. Am J Perinatol. 1995;12:294–8.

    Article  PubMed  Google Scholar 

  47. Schanler RJ, Smith LG Jr, Burns PA. Effects of long-term maternal intravenous magnesium sulfate therapy on neonatal calcium metabolism and bone mineral content. Gynecol Obstet Invest. 1997;43:236–41.

    Article  CAS  PubMed  Google Scholar 

  48. Kimberlin DF, Hauth JC, Goldenberg RL, Bottoms SF, Iams JD, Mercer B, et al. The effect of maternal magnesium sulfate treatment on neonatal morbidity in < or = 1000-gram infants. Am J Perinatol. 1998;15:635–41.

    Article  CAS  PubMed  Google Scholar 

  49. Elimian A, Verma R, Ogburn P, Wiencek V, Spitzer A, Quirk JG. Magnesium sulfate and neonatal outcomes of preterm neonates. J Matern Fetal Neonatal Med. 2002;12:118–22.

    Article  CAS  PubMed  Google Scholar 

  50. Jazayeri A, Jazayeri MK, Sutkin G. Tocolysis does not improve neonatal outcome in patients with preterm rupture of membranes. Am J Perinatol. 2003;20:189–93.

    Article  PubMed  Google Scholar 

  51. Yokoyama K, Takahashi N, Yada Y, Koike Y, Kawamata R, Uehara R, et al. Prolonged maternal magnesium administration and bone metabolism in neonates. Early Hum Dev. 2010;86:187–91.

    Article  CAS  PubMed  Google Scholar 

  52. Basu SK, Chickajajur V, Lopez V, Bhutada A, Pagala M, Rastogi S. Immediate clinical outcomes in preterm neonates receiving antenatal magnesium for neuroprotection. J Perinat Med. 2011;40:185–9.

    PubMed  Google Scholar 

  53. Lee NY, Cho SJ, Park EA. Influence of antenatal magnesium sulfate exposure on perinatal outcomes in VLBW infants with maternal preeclampsia. Neonatal Med. 2013;20:28–34.

    Article  Google Scholar 

  54. Weisz DE, Shivananda S, Asztalos E, Yee W, Synnes A, Lee SK, et al. Intrapartum magnesium sulfate and need for intensive delivery room resuscitation. Arch Dis Child Fetal Neonatal Ed. 2015;100:F59–65.

    Article  PubMed  Google Scholar 

  55. James AT, Corcoran JD, Hayes B, Franklin O, El-Khuffash A. The effect of antenatal magnesium sulfate on left ventricular afterload and myocardial function measured using deformation and rotational mechanics imaging. J Perinatol. 2015;35:913–8.

    Article  CAS  PubMed  Google Scholar 

  56. Suh BS, Ko KH, Bang JS, Joung Y, Lee YJ, Lee JW, et al. Neonatal outcomes of premature infants who were delivered from mother with hypertensive disorders of pregnancy and effects of antihypertensive drugs and MgSO4. kjp. 2015;26:190–9.

    Google Scholar 

  57. Bouet PE, Brun S, Madar H, Baisson AL, Courtay V, Gascoin-Lachambre G, et al. Implementation of an antenatal magnesium sulfate protocol for fetal neuroprotection in preterm infants. Sci Rep. 2015;5:14732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bozkurt O, Eras Z, Canpolat FE, Oguz SS, Uras N, Dilmen U. Antenatal magnesium sulfate and neurodevelopmental outcome of preterm infants born to preeclamptic mothers. J Matern Fetal Neonatal Med. 2016;29:1101–4.

    Article  CAS  PubMed  Google Scholar 

  59. De Jesus LC, Sood BG, Shankaran S, Kendrick D, Das A, Bell EF, et al. Antenatal magnesium sulfate exposure and acute cardiorespiratory events in preterm infants. Am J Obstet Gynecol. 2015;212:94.e91–7.

    Article  Google Scholar 

  60. Morag I, Okrent AL, Strauss T, Staretz-Chacham O, Kuint J, Simchen MJ, et al. Early neonatal morbidities and associated modifiable and non-modifiable risk factors in a cohort of infants born at 34-35 weeks of gestation. J Matern Fetal Neonatal Med. 2015;28:876–82.

    Article  PubMed  Google Scholar 

  61. Garcia Alonso L, Pumarada Prieto M, Gonzalez Colmenero E, Concheiro Guisan A, Suarez Albo A, Duran Fernandez-Feijoo C, et al. Prenatal therapy with magnesium sulfate and its correlation with neonatal serum magnesium concentration. Am J Perinatol. 2018;35:170–6.

    Article  CAS  PubMed  Google Scholar 

  62. Lloreda-Garcia JM, Lorente-Nicolás A, Bermejo-Costa F, Martínez-Uriarte J, López-Pérez R. Necesidad de reanimación en prematuros menores de 32 semanas expuestos a sulfato de magnesio para neuroprotección fetal. Rev Chil de Pediatría. 2016;87:261–7.

    Article  Google Scholar 

  63. Downey LC, Cotten CM, Hornik CP, Laughon MM, Toila VN, Clark RH, et al. Association of in utero magnesium exposure and spontaneous intestinal perforations in extremely low birth weight infants. J Perinatol. 2017;37:641–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jung EJ, Byun JM, Kim YN, Lee KB, Sung MS, Kim KT, et al. Antenatal magnesium sulfate for both tocolysis and fetal neuroprotection in premature rupture of the membranes before 32 weeks’ gestation. J Matern Fetal Neonatal Med. 2018;31:1431–41.

    Article  CAS  PubMed  Google Scholar 

  65. Narasimhulu D, Brown A, Egbert NM, Rojas M, Haberman S, Bhutada A, et al. Maternal magnesium therapy, neonatal serum magnesium concentration and immediate neonatal outcomes. J Perinatol. 2017;37:1297–303.

    Article  CAS  PubMed  Google Scholar 

  66. Stockley EL, Ting JY, Kingdom JC, McDonald SD, Barrett JF, Synnes AR, et al. Intrapartum magnesium sulfate is associated with neuroprotection in growth-restricted fetuses. Am J Obstet Gynecol. 2018;219:606.e601–606.e608.

    Article  Google Scholar 

  67. Qasim A, Jain SK, Aly AM. Antenatal magnesium sulfate exposure and hemodynamically significant patent ductus arteriosus in premature infants. AJP Rep. 2019;9:e353–6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Özlü F, Hacıoğlu C, Büyükkurt S, Yapıcıoğlu H, Satar M. Changes on preterm morbidities with antenatal magnesium. Cukurova Med J. 2019;44:502–8.

    Article  Google Scholar 

  69. Gochi Valdovinos A, Arriaga-Redondo M, Dejuan Bitriá E, Pérez Rodríguez I, Márquez Isidro E, Blanco Bravo D. Terapia prenatal con sulfato de magnesio y obstrucción intestinal por meconio en recién nacidos pretérmino. An de Pediatría. 2022;96:138–44.

    Article  Google Scholar 

  70. Hong JY, Hong JY, Choi YS, Kim YM, Sung JH, Choi SJ, et al. Antenatal magnesium sulfate treatment and risk of necrotizing enterocolitis in preterm infants born at less than 32 weeks of gestation. Sci Rep. 2020;10:12826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim SH, Kim YJ, Shin SH, Cho H, Shin SH, Kim EK, et al. Antenatal magnesium sulfate and intestinal morbidities in preterm infants with extremely low gestational age. Pediatr Neonatol. 2021;62:202–7.

    Article  PubMed  Google Scholar 

  72. Üstün N, Hocaoğlu M, Turgut A, Ovalı F. Effects of antenatal magnesium sulfate use for neuroprotection on cardiorespiratory complications during the early neonatal period in preterm infants. J Surg Med [Internet]. 2021;5:843–7.

  73. Chandran S, Tergestina M, Ross B, Joshi A, Rebekah G, Kumar M. Effects of antenatal magnesium sulfate on the gut function of preterm (<32 weeks) very low birth weight neonates: experience from a Tertiary Institute in South India. J Trop Pediatr. 2021;67:1–9.

    Article  Google Scholar 

  74. Ayed M, Ahmed J, More K, Ayed A, Husain H, AlQurashi A, et al. Antenatal magnesium sulfate for preterm neuroprotection: a single-center experience from Kuwait Tertiary NICU. Biomed Hub. 2022;7:80–7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sung SI, Ahn SY, Choi SJ, Oh SY, Roh CR, Yang M, et al. Increased risk of meconium-related ileus in extremely premature infants exposed to antenatal magnesium sulfate. Neonatology. 2022;119:68–76.

    Article  CAS  PubMed  Google Scholar 

  76. Bansal V, Desai A. Efficacy of antenatal magnesium sulfate for neuroprotection in extreme prematurity: a comparative observational study. J Obstet Gynaecol India. 2022;72:36–47.

    Article  CAS  PubMed  Google Scholar 

  77. Özlü F, Hacıoğlu C, Büyükkurt S, Yapıcıoğlu H, Satar M. Changes on preterm morbidities with antenatal magnesium. Cukurova Med J. 2019;44:502–8.

    Article  Google Scholar 

  78. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Krinsky DL. Natural products: show me the data. Am J Health Syst Pharm. 1998;55:125.

    Article  CAS  PubMed  Google Scholar 

  80. Ghidini A, Espada RA, Spong CY. Does exposure to magnesium sulfate in utero decrease the risk of necrotizing enterocolitis in premature infants? Acta Obstet Gynecol Scand. 2001;80:126–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AP: conceptualized, formulated the research methodology, performed formal analysis, curated data, and wrote the original draft, reviewed and edited the manuscript. Nell Aronoff participated in formulating the research methodology and provided resources for the literature search. She also contributed to writing, reviewing, and editing the manuscript. PC: administered the project and also contributed to manuscript writing, reviewing and editing. SD: conceptualized, formulated the research methodology, performed formal analysis, curated data, wrote the original draft, reviewed, edited the manuscript, supervised/administered the whole project and guarantor for the project. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Shivashankar Diggikar.

Ethics declarations

Competing interests

AP, NA, and SD: have no relevant conflicts to disclose. PC: was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD; grant number: R01HD104909 and the National Institutes of Health (NIH)/National Heart Lung and Blood Institute (NHLBI; grant no.: K12 HL138052). The results of this manuscript are not supported or endorsed by any of the funding institutions.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasath, A., Aronoff, N., Chandrasekharan, P. et al. Antenatal Magnesium Sulfate and adverse gastrointestinal outcomes in Preterm infants—a systematic review and meta-analysis. J Perinatol 43, 1087–1100 (2023). https://doi.org/10.1038/s41372-023-01710-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01710-8

This article is cited by

Search

Quick links