Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Congenital nephrotic syndrome

Abstract

Congenital nephrotic syndrome (CNS), a challenging form of nephrotic syndrome, is characterized by massive proteinuria, hypoalbuminemia, and edema. Extensive leakage of plasma proteins is the main feature of CNS. Patients can be diagnosed in utero or during the first few weeks of life, usually before three months. The etiology of CNS can be related to either genetic or nongenetic etiologies. Pathogenic variants in NPHS1, NPHS2, LAMB2, WT1, and PLCE1 genes have been implicated in this disease. The clinical course is complicated by significant edema, infections, thrombosis, hypothyroidism, failure to thrive, and others. Obtaining vascular access, frequent intravenous albumin infusions, diuretic use, infection prevention, and nutritional support are the mainstay management during their first month of life. The best therapy for these patients is kidney transplantation. CNS diagnosis and treatment continue to be a challenge for clinicians. This review increases the awareness about the pathogenesis, diagnosis, and management of CNS patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electron microscopy shows podocytes in normal and CNS (human).
Fig. 2: Overview of glomerular filtration barrier and some important proteins involved in congenital nephrotic syndrome.
Fig. 3: Podocytes in normal and abnormal conditions in Puromycin aminonucleoside (PAN) nephrosis murine model (not human podocytes) showing the concept of dysfunctional effaced podocyte foot processes.

Similar content being viewed by others

References

  1. Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 2007;119:e907–19.

    Article  PubMed  Google Scholar 

  2. Jalanko H. Congenital nephrotic syndrome. Pediatr Nephrol. 2009;24:2121–8.

    Article  PubMed  Google Scholar 

  3. Lenkkeri U, Männikkö M, McCready P, Lamerdin J, Gribouval O, Niaudet PM, et al. Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am J Hum Genet. 1999;64:51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  Google Scholar 

  5. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  6. Suvanto M, Jahnukainen T, Kestilä M, Jalanko H. Podocyte proteins in congenital and minimal change nephrotic syndrome. Clin Exp Nephrol. 2015;19:481–8.

    Article  CAS  PubMed  Google Scholar 

  7. Shahin B, Papadopoulou ZL, Jenis EH. Congenital nephrotic syndrome associated with congenital toxoplasmosis. J Pediatr. 1974;85:366–70.

    Article  CAS  PubMed  Google Scholar 

  8. Basker M, Agarwal I, Bendon KS. Congenital nephrotic syndrome-a treatable cause. Ann Trop Paediatr. 2007;27:87–90.

    Article  PubMed  Google Scholar 

  9. Besbas N, Bayrakci US, Kale G, Cengiz AB, Akcoren Z, Akinci D, et al. Cytomegalovirus-related congenital nephrotic syndrome with diffuse mesangial sclerosis. Pediatr Nephrol. 2006;21:740–2.

    Article  PubMed  Google Scholar 

  10. Chen Y, Zhang Y, Wang F, Zhang H, Zhong X, Xiao H, et al. Analysis of 14 Patients With Congenital Nephrotic Syndrome. Front Pediatr. 2019;7:341.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Evans DG, Lyon AJ. Fatal congenital cytomegalovirus infection acquired by an intra-uterine transfusion. Eur J Pediatr. 1991;150:780–1.

    Article  CAS  PubMed  Google Scholar 

  12. Batisky DL, Roy S, Gaber LW. Congenital nephrosis and neonatal cytomegalovirus infection: a clinical association. Pediatr Nephrol. 1993;7:741–3.

    Article  CAS  PubMed  Google Scholar 

  13. Kim YH, Song JH, Kim CJ, Yang EM. Congenital syphilis presenting with only nephrotic syndrome: reemergence of a forgotten disease. J Korean Med Sci. 2017;32:1374–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Massengill SF, Richard GA, Donnelly WH. Infantile systemic lupus erythematosus with onset simulating congenital nephrotic syndrome. J Pediatr. 1994;124:27–31.

    Article  CAS  PubMed  Google Scholar 

  15. Dudley J, Fenton T, Unsworth J, Chambers T, MacIver A, Tizard J. Systemic lupus erythematosus presenting as congenital nephrotic syndrome. Pediatr Nephrol. 1996;10:752–5.

    Article  CAS  PubMed  Google Scholar 

  16. Cooper JM, Sánchez PJ. Congenital syphilis. Semin Perinatol. 2018;42:176–84.

    Article  PubMed  Google Scholar 

  17. Debiec H, Nauta J, Coulet F, van der Burg M, Guigonis V, Schurmans T, et al. Role of truncating mutations in MME gene in fetomaternal alloimmunisation and antenatal glomerulopathies. Lancet. 2004;364:1252–9.

    Article  CAS  PubMed  Google Scholar 

  18. Debiec H, Guigonis V, Mougenot B, Decobert F, Haymann JP, Bensman A, et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N. Engl J Med. 2002;346:2053–60.

    Article  PubMed  Google Scholar 

  19. Nortier JL, Debiec H, Tournay Y, Mougenot B, Nöel JC, Deschodt-Lanckman MM, et al. Neonatal disease in neutral endopeptidase alloimmunization: lessons for immunological monitoring. Pediatr Nephrol. 2006;21:1399–405.

    Article  PubMed  Google Scholar 

  20. Gigante M, Piemontese M, Gesualdo L, Iolascon A, Aucella F. Molecular and genetic basis of inherited nephrotic syndrome. Int J Nephrol. 2011;2011:792195.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heeringa SF, Vlangos CN, Chernin G, Hinkes B, Gbadegesin R, Liu J, et al. Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome. Nephrol Dialysis Transplant: Off Publ Eur Dialysis Transpl Assoc - Eur Ren Assoc. 2008;23:3527–33.

    Article  CAS  Google Scholar 

  22. Levy M, Feingold J. Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney Int. 2000;58:925–43.

    Article  CAS  PubMed  Google Scholar 

  23. Ismaili K, Pawtowski A, Boyer O, Wissing KM, Janssen F, Hall M, et al. Genetic forms of nephrotic syndrome: a single-center experience in Brussels. Pediatr Nephrol. 2009;24:287–94.

    Article  PubMed  Google Scholar 

  24. Patrakka J, Kestilä M, Wartiovaara J, Ruotsalainen V, Tissari P, Lenkkeri U, et al. Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int. 2000;58:972–80.

    Article  CAS  PubMed  Google Scholar 

  25. Huttunen NP, Rapola J, Vilska J, Hallman N. Renal pathology in congenital nephrotic syndrome of Finnish type: a quantitative light microscopic study on 50 patients. Int J Pediatr Nephrol. 1980;1:10–6.

    CAS  PubMed  Google Scholar 

  26. Machuca E, Benoit G, Nevo F, Tête MJ, Gribouval O, Pawtowski A. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol. 2010;21:1209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guaragna M, Lutaif A, Piveta C, Souza M, De Souza S, Henriques T, et al. NPHS2 mutations account for only 15% of nephrotic syndrome cases. BMC Med Genet. 2015;16:88.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lipska-Ziętkiewicz BS, Ozaltin F, Hölttä T, Bockenhauer D, Bérody S, Levtchenko E, et al. Genetic aspects of congenital nephrotic syndrome: a consensus statement from the ERKNet-ESPN inherited glomerulopathy working group. Eur J Hum Genet. 2020;28:1368–78.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koziell A, Grech V, Hussain S, Lee G, Lenkkeri U, Tryggvason K, et al. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum Mol Genet. 2002;11:379–88.

    Article  CAS  PubMed  Google Scholar 

  30. Mikó Á, Menyhárd D, Kaposi A, Antignac C, Tory K. The mutation-dependent pathogenicity of NPHS2 p.R229Q: a guide for clinical assessment. Hum Mutat. 2018;39:1854–60.

    Article  PubMed  Google Scholar 

  31. Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, et al. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature. 1990;346:194–7.

    Article  CAS  PubMed  Google Scholar 

  32. Mrowka C, Schedl A. Wilms’ tumor suppressor gene WT1: from structure to renal pathophysiologic features. J Am Soc Nephrol. 2000;11:S106–15.

    Article  CAS  PubMed  Google Scholar 

  33. Nishi K, Inoguchi T, Kamei K, Hamada R, Hataya H, Ogura M, et al. Detailed clinical manifestations at onset and prognosis of neonatal-onset Denys-Drash syndrome and congenital nephrotic syndrome of the Finnish type. Clin Exp Nephrol. 2019;23:1058–65.

    Article  CAS  PubMed  Google Scholar 

  34. Drash A, Sherman F, Hartmann WH, Blizzard RM. A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J Pediatr. 1970;76:585–93.

    Article  CAS  PubMed  Google Scholar 

  35. Urbach J, Drukker A, Rosenmann E. Diffuse mesangial sclerosis–light, immunofluorescent and electronmicroscopy findings. Int J Pediatr Nephrol. 1985;6:101–4.

    CAS  PubMed  Google Scholar 

  36. Coppes M, Huff V, Pelletier J. Denys-Drash syndrome: Relating a clinical disorder to genetic alterations in the tumor suppressor gene WT1. J Pediatrics. 1993;123:673–78.

    Article  CAS  Google Scholar 

  37. Habib R, Loirat C, Gubler MC, Niaudet P, Bensman A, Levy M, et al. The nephropathy associated with male pseudohermaphroditism and Wilms’ tumor (Drash syndrome): a distinctive glomerular lesion–report of 10 cases. Clin Nephrol. 1985;24:269–78.

    CAS  PubMed  Google Scholar 

  38. Barbaux S, Niaudet P, Gubler MC, Grünfeld JP, Jaubert F, Kuttenn F, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 1997;17:467–70.

    Article  CAS  PubMed  Google Scholar 

  39. Fujita S, Sugimoto K, Miyazawa T, Yanagida H, Tabata N, Okada M, et al. A female infant with Frasier syndrome showing splice site mutation in Wilms’ tumor gene (WT1) intron 9. Clin Nephrol. 2010;73:487–91.

    Article  CAS  PubMed  Google Scholar 

  40. Zenker M, Aigner T, Wendler O, Tralau T, Müntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13:2625–32.

    Article  CAS  PubMed  Google Scholar 

  41. Zenker M, Tralau T, Lennert T, Pitz S, Mark K, Madlon H, et al. Congenital nephrosis, mesangial sclerosis, and distinct eye abnormalities with microcoria: an autosomal recessive syndrome. Am J Med Genet A. 2004;130a:138–45.

    Article  PubMed  Google Scholar 

  42. Hasselbacher K, Wiggins RC, Matejas V, Hinkes BG, Mucha B, Hoskins BE, et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int. 2006;70:1008–12.

    Article  CAS  PubMed  Google Scholar 

  43. Lin PY, Tseng MH, Zenker M, Rao J, Hildebrandt F, Lin SH, et al. Galloway-Mowat syndrome in Taiwan: OSGEP mutation and unique clinical phenotype. Orphanet J Rare Dis. 2018;13:226.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Colin E, Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, et al. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet. 2014;95:637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gosens I, den Hollander AI, Cremers FP, Roepman R. Composition and function of the Crumbs protein complex in the mammalian retina. Exp Eye Res. 2008;86:713–26.

    Article  CAS  PubMed  Google Scholar 

  46. van den Hurk JA, Rashbass P, Roepman R, Davis J, Voesenek KE, Arends ML, et al. Characterization of the Crumbs homolog 2 (CRB2) gene and analysis of its role in retinitis pigmentosa and Leber congenital amaurosis. Mol Vis. 2005;11:263–73.

    PubMed  Google Scholar 

  47. Slavotinek A, Kaylor J, Pierce H, Cahr M, DeWard SJ, Schneidman-Duhovny D, et al. CRB2 mutations produce a phenotype resembling congenital nephrosis, Finnish type, with cerebral ventriculomegaly and raised alpha-fetoprotein. Am J Hum Genet. 2015;96:162–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Has C, Spartà G, Kiritsi D, Weibel L, Moeller A, Vega-Warner V, et al. Integrin α3 mutations with kidney, lung, and skin disease. N. Engl J Med. 2012;366:1508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. López LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet. 2006;79:1125–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hata D, Miyazaki M, Seto S, Kadota E, Muso E, Takasu K, et al. Nephrotic syndrome and aberrant expression of laminin isoforms in glomerular basement membranes for an infant with Herlitz junctional epidermolysis bullosa. Pediatrics. 2005;116:e601–7.

    Article  PubMed  Google Scholar 

  51. Patrakka J, Martin P, Salonen R, Kestilä M, Ruotsalainen V, Männikkö M, et al. Proteinuria and prenatal diagnosis of congenital nephrosis in fetal carriers of nephrin gene mutations. Lancet. 2002;359:1575–7.

    Article  CAS  PubMed  Google Scholar 

  52. Heinonen S, Ryynänen M, Kirkinen P, Penttilä I, Syrjänen K, Seppälä M, et al. Prenatal screening for congenital nephrosis in east Finland: results and impact on the birth prevalence of the disease. Prenat Diagn. 1996;16:207–13.

    Article  CAS  PubMed  Google Scholar 

  53. Boyer O, Schaefer F, Haffner D, Bockenhauer D, Hölttä T, Bérody S, et al. Management of congenital nephrotic syndrome: consensus recommendations of the ERKNet-ESPN Working Group. Nat Rev Nephrol. 2021;17:277–89.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bérody S, Heidet L, Gribouval O, Harambat J, Niaudet P, Baudouin V, et al. Treatment and outcome of congenital nephrotic syndrome. Nephrol Dial Transpl. 2019;34:458–67.

    Article  Google Scholar 

  55. Dufek S, Holtta T, Trautmann A, Ylinen E, Alpay H, Ariceta G, et al. Management of children with congenital nephrotic syndrome: challenging treatment paradigms. Nephrol Dial Transpl. 2019;34:1369–77.

    Article  CAS  Google Scholar 

  56. Hölttä T, Jalanko H. Congenital nephrotic syndrome: is early aggressive treatment needed? Yes. Pediatr Nephrol. 2020;35:1985–90.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Boyer O, Bérody S. Congenital nephrotic syndrome: is early aggressive treatment needed?-No. Pediatr Nephrol. 2020;35:1991–6.

    Article  PubMed  Google Scholar 

  58. Dufek S, Ylinen E, Trautmann A, Alpay H, Ariceta G, Aufricht C, et al. Infants with congenital nephrotic syndrome have comparable outcomes to infants with other renal diseases. Pediatr Nephrol. 2019;34:649–55.

    Article  PubMed  Google Scholar 

  59. Mattoo TK. Hypothyroidism in infants with nephrotic syndrome. Pediatr Nephrol. 1994;8:657–9.

    Article  CAS  PubMed  Google Scholar 

  60. Lau KK, Chan HH, Massicotte P, Chan AK. Thrombotic complications of neonates and children with congenital nephrotic syndrome. Curr Pediatr Rev. 2014;10:169–76.

    Article  PubMed  Google Scholar 

  61. Holmberg C, Antikainen M, Rönnholm K, Ala Houhala M, Jalanko H. Management of congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol. 1995;9:87–93.

    Article  CAS  PubMed  Google Scholar 

  62. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564–8.

    Article  CAS  PubMed  Google Scholar 

  63. Hölttä T, Bonthuis M, Van Stralen KJ, Bjerre A, Topaloglu R, Ozaltin F, et al. Timing of renal replacement therapy does not influence survival and growth in children with congenital nephrotic syndrome caused by mutations in NPHS1: data from the ESPN/ERA-EDTA Registry. Pediatr Nephrol. 2016;31:2317–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. William Day of the University of Arizona Microscopy Core for assistance with electron microscopy, Dr. Johnathan Zuckerman at the University of California Los Angles for providing NPHS1 pathogenic variant micrograph, and Dr. Koichiro Ichimura at Juntendo University, Japan for providing colored podocytes micrograph (Fig. 3).

Author information

Authors and Affiliations

Authors

Contributions

ASA, RA, SB wrote the manuscript. ASA provided the figures, wrote, and revised the manuscript.

Corresponding author

Correspondence to Asmaa S. AbuMaziad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbuMaziad, A.S., Abusaleh, R. & Bhati, S. Congenital nephrotic syndrome. J Perinatol 41, 2704–2712 (2021). https://doi.org/10.1038/s41372-021-01279-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01279-0

This article is cited by

Search

Quick links