Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional movement assessment with the Test of Infant Motor Performance

Abstract

The purpose of this article is to review research on the Test of Infant Motor Performance, a functional assessment of movement capabilities with age standards for infants from 34 weeks postmenstrual age through 17 weeks post term (corrected age). The Test of Infant Motor Performance was normed on a U.S. population-based sample to support its use as a tool for diagnosing delayed motor development in early infancy. The test is one of the preferred methods for parents of babies in special care nurseries to learn about their infant’s development. The test was used in a variety of clinical trials to document effects of early therapy and can be used as a short-term outcome measure for other interventions expected to impact functional motor performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rogers EE, Hintz SR. Early neurodevelopmental outcomes of extremely preterm infants. Sem Perinatol. 2016;40:497–509.

    Article  Google Scholar 

  2. Myrhaug HT, Brurberg KG, Hov L, Markestad T. Survival and impairment of extremely premature infants: a meta-analysis. Pediatrics. 2019;143:e20180933.

    Article  PubMed  Google Scholar 

  3. Khurana S, Kane AE, Brown SE, Tarver T, Dusing SC. Effect of neonatal therapy on the motor, cognitive, and behavioral development of infants born preterm: a systematic review. Dev Med Child Neurol. 2020;62:684–92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Magnusson DM, Mistry KB. Racial and ethnic disparities in unmet need for pediatric therapy services: the role of family-centered care. Acad Pediatr. 2017;17:27–33.

    Article  PubMed  Google Scholar 

  5. Murney ME, Campbell SK. The ecological relevance of the Test of Infant Motor Performance elicited scale items. Phys Ther. 1998;78:479–89. https://academic.oup.com/ptj/article/78/5/479/2633279.

    Article  CAS  PubMed  Google Scholar 

  6. Campbell SK. The Test of Infant Motor Performance test user’s manual version 3.0 for the TIMP Version 5. Chicago IL: Infant Motor Performance Scales, LLC; 2012.

  7. Craciunoiu O, Holsti L. A systematic review of the predictive validity of neurobehavioral assessments during the preterm period. Phys Occup Ther Pediatr. 2016;17:1–16.

    Google Scholar 

  8. Heineman KR, Hadders-Algra M. Evaluation of neuromotor function in infancy-A systematic review of available methods. J Dev Behav Pediatr. 2008;29:315–23. http://journals.lww.com/jrnldbp/toc/2008/08000.

    Article  PubMed  Google Scholar 

  9. Nobel Y, Boyd R. Neonatal assessments for the preterm infant up to 4 months corrected age: a systematic review. Dev Med Child Neurol. 2012;54:129–39.

    Article  Google Scholar 

  10. Spittle AJ, Doyle LW, Boyd RN. A systematic review of the clinimetric properties of neuromotor assessments for preterm infants during the first year of life. Dev Med Child Neurol. 2008;50:254–66.

    Article  PubMed  Google Scholar 

  11. Campbell SK, Swanlund A, Smith E, Liao P-j, Zawacki L. Validity of the TIMPSI for estimating concurrent performance on the Test of Infant Motor Performance. Pediatr Phys Ther. 2008;20:3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gower L, Jenkins D, Fraser JL, Ramakrishnan V, Coker-Bolt P. Early developmental assessment with a short screening test, the STEP, predicts one-year outcomes. J Perinatol. 2019;39:184–92.

    Article  PubMed  Google Scholar 

  13. Glanzman AM, et al. The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord. 2010;20:155–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Campbell SK, Wright BD, Linacre JM. Development of a functional movement scale for infants. J Appl Meas. 2002;3:191–204. http://jampress.org/abst2002.pdf.

    Google Scholar 

  15. Chiquetti EMS, Valentini NC. Test of Infant Motor Performance for infants in Brazil: unidimensional model, item difficulty, and motor function. Pediatr Phys Ther. 2020;32:390–7. https://journals.lww.com/pedpt/pages/articleviewer.aspx?year=2020&issue=10000&article=00021&type=Fulltext.

    Article  Google Scholar 

  16. Campbell SK, Levy P, Zawacki L, Liao P-j. Population-based age standards for interpreting results on the Test of Infant Motor Performance. Pediatr Phys Ther. 2006;18:119–25.

    Article  PubMed  Google Scholar 

  17. Davidson EC, Hobel CJ. POPRAS: a guide to using the prenatal, intrapartum, postpartum record. Torrence, CA: South Bay Regional Perinatal Project Professional Staff Association; 1978.

  18. Giachetta L, Nicolau CM, Juliani RCTP, de Carvalho WB, Krebs VLJ. Characterization of the motor performance of newborns in a neonatal unit of tertiary level. Rev Assoc Med Bras. 2016;62:553–60. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-42302016000600553&lng=en&tlng=en.

    Article  PubMed  Google Scholar 

  19. Raniero EP, Tudella E, Mattos RS. Pattern and rate of motor skill acquisition among preterm infants during the first four months corrected age. Rev Bras Fisioter. 2010;14:396–403. http://www.scielo.br/pdf/rbfis/v14n5/en_a08v14n5.pdf.

    Article  PubMed  Google Scholar 

  20. Santos VM, Formiga CKMR, de Mello PRB, Leone CR. Late preterm infants’ motor development until term age. Clinics. 2017;72:17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chiquetti EMS, Valentini NC, Saccani R. Validation and reliability of the Test of Infant Motor Performance for Brazilian infants. Phys Occup Ther Pediatr. 2020;40:470–85.

    Article  PubMed  Google Scholar 

  22. He L, Shao D-D, Du H-Y, Chen Y-N. Role of Test of Infant Motor Performance in premature evaluation in corrected gestational aged 8-9 and 12-13 weeks. Chin J Child Health Care. 2014;22:252–4 (Chinese language with English abstract). www.cjchc.net

  23. Wang CJ, Zhao SL, Shen L, Hu B, Pu XQ, Cai X, et al. Analysis of the Test of Infant Motor Performance data from 642 infants with a postconceptual age of 38-58 weeks. Zongguo Dang Dai Er Ke Za Zhi. 2017;19:1252–6.

    Google Scholar 

  24. Campbell SK, Hedeker D. Validity of the Test of Infant Motor Performance for discriminating among infants with varying risk for poor motor outcome. J Pediatr. 2001;139:546–51.

    Article  CAS  PubMed  Google Scholar 

  25. da Silva AJ, Neves LAT, Frônio JDS, Ribeiro LC. Factors related to motor developmental delay of newborns. J Hum Growth Dev. 2014;24:320–7.

    Article  Google Scholar 

  26. Lee EJ, Han JT, Lee JH. Risk factors affecting Tests of Infant Motor Performance (TIMP) in preterm infants at post-conceptional age of 40 weeks. Dev Neurorehabil. 2012;15:79–83.

    Article  PubMed  Google Scholar 

  27. Cardoso ACN, de Campos AC, dos Santos MM, Santos DCC, Rocha NACF. Motor performance of children with Down syndrome and typical development at 2 to 4 and 26 months. Pediatr Phys Ther. 2015;27:135–41. http://journals.lww.com/pedpt/Fulltext/2015/27020/Motor_Performance_of_Children_With_Down_Syndrome.9.aspx.

    Article  PubMed  Google Scholar 

  28. Kloze A, Brzuszkiewicz-Kuzmicka G, Czyzewski P. Use of the TIMP in assessment of motor development of infants with Down syndrome. Pediatr Phys Ther. 2016;28:40–5. http://journals.lww.com/pedpt/Fulltext/2016/28010/Use_of_the_TIMP_in_Assessment_of_Motor_Development.11.aspx.

    Article  PubMed  Google Scholar 

  29. Campbell M, Rabbidge B, Ziviani J, Sakzewski L. Clinical feasibility of pre-operative neurodevelopmental assessment of infants undergoing open heart surgery. J Paediatr Child Health. 2017;53:794–9.

    Article  PubMed  Google Scholar 

  30. Campbell MJ, Ziviani JM, Stocker CF, Khan A, Sakzewski L. Neuromotor performance in infants before and after early open-heart surgery and risk factors for delayed development at 6 months of age. Cardiol Young. 2019;29:100–9. https://www.cambridge.org/core/journals/cardiology-in-the-young/article/neuromotor-performance-in-infants-before-and-after-early-openheart-surgery-and-risk-factors-for-delayed-development-at-6-months-of-age/510058C1662086EAB4890689369387A0.

    Article  PubMed  Google Scholar 

  31. Krosschell KJ, Maczulski J, Scott C, King W, Hartman JT, Case LE, et al. Reliability and validity of the TIMPSI for infants with Spinal Muscular Atrophy Type I. Pediatr Phys Ther. 2013;25:140–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kolb S, Coffey C, Yankey J, Krosschell K, Arnold WD, Rutkove SB, et al. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann Clin Transl Neurol. 2016;3:132–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748311/pdf/ACN3-3-132.pdf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kolb S, Coffey C, Yankey J, Krosschell K, Arnold WD, Rutkove SB, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82:883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vill K, Kölbel H, Schwartz O, Blaschek A, Olgemöller B, Harms E, et al. One year of newborn screening for SMA-Results of a German pilot project. J Neuromuscul Dis. 2019;6:503–15.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dusing SC, Murray T, Stern M. Parent preferences for motor development education in the Neonatal Intensive Care Unit. Pediatr Phys Ther. 2008;20:363–8. http://journals.lww.com/pedpt/Fulltext/2008/02040/Parent_Preferences_for_Motor_Development_Education.9.aspx.

    Article  PubMed  Google Scholar 

  36. Dusing SC, Van Drew CM, Brown SE. Instituting parent education practices in the neonatal intensive care unit: an administrative case report of practice evaluation and statewide action. Phys Ther. 2012;92:2–9.

    Article  Google Scholar 

  37. Goldstein LA, Campbell SK. Effectiveness of the Test of Infant Motor Performance as an educational tool for mothers. Pediatr Phys Ther. 2008;20:152–9. http://journals.lww.com/pedpt/Fulltext/2008/02020/Effectiveness_of_the_Test_of_Infant_Motor.5.aspx.

    Article  PubMed  Google Scholar 

  38. Zawacki L, Campbell S. From observation to rehabilitation. In Cioni G, Mercuri E (eds), Neurological assessment in the first two years of life. London: MacKeith Press; 2007, pp. 230-45.

  39. Dusing SC, Lobo MA, Lee H-M, Galloway JC. Intervention in the first weeks of life for infants born late preterm: a case series. Pediatr Phys Ther. 2013;25:194–203. http://journals.lww.com/pedpt/Fulltext/2013/25020/Intervention_in_the_First_Weeks_of_Life_for.16.aspx.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Duff SV, Morris C, Stanley CS, Adeniyi-Jones S, Gringlas M, Damle V, et al. Neural recovery in infants who sustained perinatal asphyxia and received head cooling. Pediatr Phys Ther. 2009;21:106 http://journals.lww.com/pedpt/Citation/2009/02110/Abstracts_of_Poster_and_Platform_Presentations_at.15.aspx.

    Google Scholar 

  41. Hilderman CGE, Harris SR. Early intervention post-hospital discharge for infants born preterm. Phys Ther. 2014;94:1211–9. https://academic.oup.com/ptj/article/94/9/1211/2735587/Early-Intervention-Post-Hospital-Discharge-for.

    Article  PubMed  Google Scholar 

  42. Brown SE, Dusing SC. Knowledge translation lecture: providing best practice in neonatal intensive care and follow-up: a clinician-researcher collaboration. Pediatr Phys Ther. 2019;31:308–14. https://journals.lww.com/pedpt/fulltext/2019/10000/Knowledge_Translation_Lecture__Providing_Best.2.aspx#pdf-link.

    Article  PubMed  Google Scholar 

  43. Kaplan SL, Coulter C, Sargent B. Physical therapy management of congenital muscular torticollis: a 2018 evidence-based clinical practice guideline from the APTA Academy of Pediatric Physical Therapy. https://journals.lww.com/pedpt/Fulltext/2018/10000/Physical_Therapy_Management_of_Congenital_Muscular.2.aspx.

  44. Novak I, Morgan C, Adde L, Badawi M, Blackman J, Boyd RN, et al. Care pathway for early detection of cerebral palsy. American Academy for Cerebral Palsy and Developmental Medicine, May, 2020. https://www.aacpdm.org/publications/care-pathways/early-detection.

  45. Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J, et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 2017;171:897–907.

    Article  PubMed  Google Scholar 

  46. Barbosa VM, Campbell SK, Sheftel D, Singh J, Beligere N. Longitudinal performance of infants with cerebral palsy on the Test of Infant Motor Performance and on the Alberta Infant Motor Scale. Phys Occup Ther Pediatr. 2003;23:7–29.

    Article  PubMed  Google Scholar 

  47. Barbosa VM, Campbell SK, Smith E, Berbaum M. Comparison of Test of Infant Motor Performance (TIMP) item responses among children with cerebral palsy, developmental delay, and typical development. Am J Occup Ther. 2005;59:446–56. https://ajot.aota.org/article.aspx?articleid=1872095.

    Article  PubMed  Google Scholar 

  48. Maitre NL, Burton VJ, Duncan AF, Iyer S, Ostrander B, Winter S, et al. Network implementation of guideline for early detection decreases age at cerebral palsy diagnosis. Pediatr. 2020;145:e20192126 https://pediatrics.aappublications.org/content/pediatrics/145/5/e20192126.full.pdf.

    Article  Google Scholar 

  49. Morgan C. Towards more accurate prognostication after preterm birth. Dev Med Child Neurol. 2018;10 Mar epub commentary. https://doi.org/10.1111/dmcn.13765

  50. Girolami G, Campbell SK. Efficacy of a Neuro-Developmental Treatment program to improve motor control of preterm infants. Pediatr Phys Ther. 1994;6:175–84. http://journals.lww.com/pedpt/Abstract/1994/00640/Efficacy_of_a_Neuro_Developmental_Treatment.2.aspx.

    Article  Google Scholar 

  51. Lee E-J. Effect of Neuro-Development Treatment on motor development in preterm infants. J Phys Ther Sci. 2017;29:1095–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ustad T, Evensen KAI, Campbell SK, Girolami GL, Helbostad J, Jørgensen L, et al. Early parent-administered physical therapy for preterm infants: a randomized controlled trial. Pediatrics. 2016;138(Aug):e20160271.

    Article  PubMed  Google Scholar 

  53. Ho YB, Lee RS, Chow CB, Pang MY. Impact of massage therapy on motor outcomes in very low-birthweight infants: randomized controlled pilot study. Pediatr Int. 2010;52:378–85.

    Article  PubMed  Google Scholar 

  54. Fucile S, Gisel EG. Sensorimotor interventions improve growth and motor function in preterm infants. Neonatal Netw. 2010;29:359–66.

    Article  PubMed  Google Scholar 

  55. Valizadeh L, Sanaeefar M, Hosseini MB, Jafarabadi MA, Shamili A. Effect of early physical activity programs on motor performance and neuromuscular development in infants born preterm: A randomized clinical trial. J Caring Sci. 2017;6:69–81. http://journals.tbzmed.ac.ir/JCS/Manuscript/JCS-6-67.pdf.

    Article  Google Scholar 

  56. Lekskulchai R, Cole J. Effect of a developmental program on motor performance in infants born preterm. Aust J Physiother. 2001;47:169–76. http://www.journalofphysiotherapy.com/article/S0004-9514(14)60264-6/pdf.

    Article  CAS  PubMed  Google Scholar 

  57. Dusing SC, Tripathi T, Marcinowski EC, Thacker LR, Brown LF, Hendricks-Munoz KD. Supporting play exploration and early developmental intervention versus usual care to enhance development outcomes during the transition from the neonatal intensive care unit to home: a pilot randomized controlled trial. BMC Pediatr. 2018;18:46.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee H-M, Galloway JC. Early intensive postural and movement training advances head control in very young infants. Phys Ther. 2012;92:935–47.

    Article  PubMed  Google Scholar 

  59. Finch-Edmondson M, Morgan C, Hunt RW, Novak I. Emergent prophylactic, reparative and restorative brain interventions for infants born preterm with cerebral palsy. Front Physiol. 2019;10:15.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wachtel EV, Verma S, Mally PV. Update on the current management of newborns with neonatal encephalopathy. Curr Probl Pediatr Adolesc Health Care. 2019;49:1–26.

    Google Scholar 

  61. Krosschell KJ, Bosch M, Nelson L, Duong T, Lowes LP, Alfaro LN, et al. Motor function test reliability during the NeuroNEXT spinal muscular atrophy infant biomarker study. J Neuromusc Dis. 2018;5:509–21. https://content.iospress.com/articles/journal-of-neuromuscular-diseases/jnd180327.

    Article  Google Scholar 

  62. Campbell SK, Kolobe THA, Wright B, Linacre JM. Validity of the Test of Infant Motor Performance for prediction of 6-, 9-, and 12-month scores on the Alberta Infant Motor Scale. Dev Med Child Neurol. 2002;44:263–72.

    Article  PubMed  Google Scholar 

  63. Song YH, Chang HJ, Shin YB, Park YS, Park YH, Cho ES. The validity of two neuromotor assessments for predicting motor performance at 12 months in preterm infants. Ann Rehabil Med. 2018;42:296–304.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Manacero SA, Marschik PB, Nunes ML, Einspieler C. Is it possible to predict the infant’s neurodevelopmental outcome at 14 months of age by means of a single preterm assessment of General Movements? Early Hum Dev. 2012;88:39–43.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Snider L, Majnemer A, Mazer B, Campbell S, Bos A. Prediction of motor and functional outcomes in infants born preterm assessed at term. Pediatr Phys Ther. 2009;21:2–11. http://journals.lww.com/pedpt/Fulltext/2009/02110/Prediction_of_Motor_and_Functional_Outcomes_in.2.aspx.

    Article  PubMed  Google Scholar 

  66. Kim SA, Lee YJ, Lee YG. Predictive value of Test of Infant Motor Performance for infants based on correlation between TIMP and Bayley Scales of Infant Development. Ann Rehabil Med. 2011;35:860–6. http://europepmc.org/articles/PMC3309382.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Peyton C, Schreiber MD, Msall ME. The Test of Infant Motor Performance at 3 months predicts language, cognitive, and motor outcomes in infants born preterm at 2 years of age. Dev Med Child Neurol. 2018;60:1239–43.

    Article  PubMed  Google Scholar 

  68. George JM, Colditz PB, Chatfield MD, Fiori S, Pannek K, Fripp J, et al. Early clinical and MRI biomarkers of cognitive and motor outcomes in very preterm born infants. Pediatr Res. 2021. https://www.nature.com/articles/s41390-021-01399-5.

  69. Kolobe THA, Bulanda M, Susman L. Predicting motor outcome at preschool age for infants tested at 7, 30, 60, and 90 days after term age using the Test of Infant Motor Performance. Phys Ther. 2004;84:1144–56. https://academic.oup.com/ptj/article/84/12/1144/2805318/Predicting-Motor-Outcome-at-Preschool-Age-for.

    Article  PubMed  Google Scholar 

  70. Flegel J, Kolobe THA. Predictive validity of the Test of Infant Motor Performance as measured by the Bruininks-Oseretsky Test of Motor Proficiency at school age. Phys Ther. 2002;82:762–71. https://academic.oup.com/ptj/article/82/8/762/2857646/Predictive-Validity-of-the-Test-of-Infant-Motor.

    Article  PubMed  Google Scholar 

  71. Magalhães RC, Moreira JM, Vieira ELM, Rocha NP, Miranda DM, Simões e Silva AC. Urinary levels of IL-1beta and GDNF in preterm neonates as potential biomarkers of motor development: a prospective study. Mediators Inflam. 2017; Article ID 8201423. https://www.hindawi.com/journals/mi/2017/8201423/.

  72. Guyer C, Werner H, Wehrle F, Bölsterli BK, Hagmann C, Jenni OG, et al. Brain maturation in the first 3 months of life, measured by electroencephalogram: a comparison between preterm and term-born infants. Clin Neurophysiol. 2019;130:1859–68. 

    Article  Google Scholar 

  73. McLean G, Hough C, Sehgal A, Ditchfield, Polglase GR, Miller SL. Three-dimensional ultrasound cranial imaging and early neurodevelopment in preterm growth-restricted infants. J Paediatr Child Health. 2018;54:420–5. https://research.monash.edu/en/publications/three-dimensional-ultrasound-cranial-imaging-and-early-neurodevel.

    Article  PubMed  Google Scholar 

  74. George JM, Fiori S, Fripp J, Pannek K, Guzzetta A, David M, et al. Relationship between very early brain structure and neuromotor, neurological and neurobehavioral function in infants born <31 weeks gestational age. Early Hum Dev. 2018;117:74–82.

    Article  PubMed  Google Scholar 

  75. Peyton C, Yang E, Kocherginsky M, Adde L, Fjortoft T, Stoen R, et al. Relationship between white matter pathology and performance on the General Movement Assessment and the Test of Infant Motor Performance in very preterm infants. Early Hum Dev. 2016;95:23–27. http://www.sciencedirect.com/science/article/pii/S0378378215300761?via%3Dihub.

    Article  PubMed  Google Scholar 

  76. Campbell SK, Zawacki L, Rankin KM, Yoder JC, Shapiro N, Li Z, et al. Concurrent validity of the TIMP and the Bayley III Scales at 6 weeks corrected age. Pediatr Phys Ther. 2013;25:395–401. http://journals.lww.com/pedpt/Fulltext/2013/25040/Concurrent_Validity_of_the_TIMP_and_the_Bayley_III.3.aspx.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Linke AC, Wild C, Zubiaurre-Elorza L, Herzmann C, Duffy H, Han VK, et al. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months. NeuroImage:Clinical. 2018;18:399–406. https://www.sciencedirect.com/science/article/pii/S2213158218300366.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Campbell SK, Kolobe THA, Osten ET, Lenke M, Girolami GL. Construct validity of the Test of Infant Motor Performance. Phys Ther. 1995;75:585–96. https://academic.oup.com/ptj/article-abstract/75/7/585/2632886/Construct-Validity-of-the-Test-of-Infant-Motor?redirectedFrom=fulltext.

    Article  CAS  PubMed  Google Scholar 

  79. Campbell SK. Test-retest reliability of the Test of Infant Motor Performance. Pediatr Phys Ther. 1999;11:60–66. http://journals.lww.com/pedpt/Abstract/1999/01120/Test_Retest_Reliability_of_the_Test_of_Infant.2.aspx.

    Article  Google Scholar 

  80. Ustad T, Helbostad JL, Campbell SK, Girolami GL, Jørgensen L, Øberg GK, et al. Test-retest reliability of the Test of Infant Motor Peformance Screening Items in infants at risk for impaired functional motor performance. Ear Hum Dev. 2016;93:43–6.

    Article  Google Scholar 

Download references

Funding

The author’s research on the reliability and validity of the TIMP and the TIMPSI was funded by the Foundation for Physical Therapy Research and NIH grants R01 HD32567 and R01 HD38867.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzann K. Campbell.

Ethics declarations

Conflict of interest

The author is a developer of the TIMP and the TIMPSI and is a Partner in Infant Motor Performance Scales, LLC, the publisher of the tests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, S.K. Functional movement assessment with the Test of Infant Motor Performance. J Perinatol 41, 2385–2394 (2021). https://doi.org/10.1038/s41372-021-01060-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01060-3

Search

Quick links