Molecular Biology

Specific diacylglycerols generated by hepatic lipogenesis stimulate the oncogenic androgen receptor activity in male hepatocytes

Abstract

Background

Obesity-induced hepatocellular carcinoma (HCC) is more prevalent in males than in females, but the underlying mechanism remains unclear. The influence of hepatic androgen receptor (AR) pathway on the gender difference of HCC has been well documented. Here we investigated the role of hepatic lipogenesis, which is elevated in the livers of obese and nonalcoholic fatty liver disease (NAFLD) patients, in stimulating the AR pathway for the male preference of obesity induced HCC.

Methods

Male C57BL/6J mice were fed a fructose-rich high carbohydrate diet (HCD) to induce hepatic lipogenesis. The effect of hepatic lipogenesis on AR was examined by the expression of hydrodynamically injected AR reporter and the endogenous AR target gene; the mechanism was delineated in hepatoma cell lines and validated in male mice.

Results

The hepatic lipogenesis induced by a fructose-rich HCD enhanced the transcriptional activity of hepatic AR in male mice, which did not happen when fed a high fat diet. This AR activation was blocked by sh-RNAs or inhibitors targeting key enzymes in lipogenesis, either acetyl-CoA carboxylase subunit alpha (ACCα), or fatty acid synthase (FASN), in vivo and in vitro. Further mechanistic study identified that specific unsaturated fatty acid, the oleic acid (C18:1 n-9), incorporated DAGs produced by hepatic lipogenesis are the key molecules to enhance the AR activity, through activation of Akt kinase, and this novel mechanism is targeted by metformin.

Conclusions

Our study elucidates a novel mechanism underlying the higher risk of HCC in obese/NAFLD males, through specific DAGs enriched by hepatic lipogenesis to increase the transcriptional activity of hepatic AR, a confirmed risk factor for male HCC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 2008;14:4300–08.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Eguchi Y, Hyogo H, Ono M, Mizuta T, Ono N, Fujimoto K, et al. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study. J Gastroenterol. 2012;47:586–95.

    CAS  PubMed  Google Scholar 

  3. 3.

    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.

    PubMed  Google Scholar 

  4. 4.

    Larsson SC, Wolk A. Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. Br J Cancer. 2007;97:1005–08.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ertle J, Dechene A, Sowa JP, Penndorf V, Herzer K, Kaiser G, et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer. 2011;128:2436–43.

    CAS  PubMed  Google Scholar 

  6. 6.

    Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51:679–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Alexander J, Torbenson M, Wu TT, Yeh MM. Non-alcoholic fatty liver disease contributes to hepatocarcinogenesis in non-cirrhotic liver: a clinical and pathological study. J Gastroenterol Hepatol. 2013;28:848–54.

    PubMed  Google Scholar 

  8. 8.

    Hashimoto E, Tokushige K. Prevalence, gender, ethnic variations, and prognosis of NASH. J Gastroenterol. 2011;46(Suppl 1):63–69.

    PubMed  Google Scholar 

  9. 9.

    Ballestri S, Nascimbeni F, Baldelli E, Marrazzo A, Romagnoli D, Lonardo A. NAFLD as a sexual dimorphic disease: role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and inherent cardiovascular risk. Adv Ther. 2017;34:1291–326.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140:124–31.

    PubMed  Google Scholar 

  11. 11.

    Chang IC, Huang SF, Chen PJ, Chen CL, Chen CL, Wu CC, et al. The hepatitis viral status in patients with hepatocellular carcinoma: a study of 3843 patients from Taiwan liver cancer network. Medicine. 2016;95:e3284.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Yu MW, Cheng SW, Lin MW, Yang SY, Liaw YF, Chang HC, et al. Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst. 2000;92:2023–28.

    CAS  PubMed  Google Scholar 

  13. 13.

    Chiu CM, Yeh SH, Chen PJ, Kuo TJ, Chang CJ, Chen PJ, et al. Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level. Proc Natl Acad Sci USA. 2007;104:2571–78.

    CAS  PubMed  Google Scholar 

  14. 14.

    Wang SH, Yeh SH, Shiau CW, Chen KF, Lin WH, Tsai TF, et al. Sorafenib action in hepatitis B virus X-activated oncogenic androgen pathway in liver through SHP-1. J Natl Cancer Inst. 2015;107:djv190.

    PubMed  Google Scholar 

  15. 15.

    Kanda T, Steele R, Ray R, Ray RB. Hepatitis C virus core protein augments androgen receptor-mediated signaling. J Virol. 2008;82:11066–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Chu CM, Liaw YF, Sheen IS, Lin DY, Huang MJ. Sex difference in chronic Hepatitis-B virus-Infection - an appraisal based on the status of hepatitis-B E-antigen and antibody. Hepatology. 1983;3:947–50.

    CAS  PubMed  Google Scholar 

  17. 17.

    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig. 2005;115:1343–51.

    CAS  PubMed  Google Scholar 

  18. 18.

    Chen HP, Shieh JJ, Chang CC, Chen TT, Lin JT, Wu MS, et al. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut. 2013;62:606–15.

    CAS  PubMed  Google Scholar 

  19. 19.

    Bhalla K, Hwang BJ, Dewi RE, Twaddel W, Goloubeva OG, Wong KK, et al. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res. 2012;5:544–52.

    CAS  Google Scholar 

  20. 20.

    Samuel VT. Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab. 2011;22:60–65.

    CAS  PubMed  Google Scholar 

  21. 21.

    Couchepin C, Le KA, Bortolotti M, da Encarnacao JA, Oboni JB, Tran C, et al. Markedly blunted metabolic effects of fructose in healthy young female subjects compared with male subjects. Diabetes Care. 2008;31:1254–56.

    CAS  PubMed  Google Scholar 

  22. 22.

    Bantle JP, Raatz SK, Thomas W, Georgopoulos A. Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr. 2000;72:1128–34.

    CAS  PubMed  Google Scholar 

  23. 23.

    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wiedmer SK, Robciuc A, Kronholm J, Holopainen JM, Hyotylainen T. Chromatographic lipid profiling of stress-exposed cells. J Sep Sci. 2012;35:1845–53.

    CAS  PubMed  Google Scholar 

  25. 25.

    Zhou TA, Kamimura K, Zhang GS, Liu DX. Intracellular gene transfer in rats by tail vein injection of plasmid DNA. AAPS J. 2010;12:692–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Li Z, Tuteja G, Schug J, Kaestner KH. Foxa1 and foxa2 are essential for sexual dimorphism in liver cancer. Cell. 2012;148:72–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Li CL, Li CY, Lin YY, Ho MC, Chen DS, Chen PJ, et al. Androgen receptor enhances hepatic telomerase reverse transcriptase gene transcription after hepatitis B virus integration or point mutation in promoter region. Hepatology. 2019;69:498–512.

    CAS  PubMed  Google Scholar 

  28. 28.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–08.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002;76:911–22.

    CAS  PubMed  Google Scholar 

  30. 30.

    Harmancey R, Wilson CR, Wright NR, Taegtmeyer H. Western diet changes cardiac acyl-CoA composition in obese rats: a potential role for hepatic lipogenesis. J Lipid Res. 2010;51:1380–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci USA. 2000;97:3450–4.

    CAS  PubMed  Google Scholar 

  32. 32.

    Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Investig. 2008;118:829–38.

    CAS  PubMed  Google Scholar 

  33. 33.

    Sozzani S, Agwu DE, Mccall CE, Oflaherty JT, Schmitt JD, Kent JD, et al. Propranolol, a phosphatidate phosphohydrolase inhibitor, also inhibits protein-kinase-C. J Biol Chem. 1992;267:20481–88.

    CAS  PubMed  Google Scholar 

  34. 34.

    Siddiqui RA, Xu Z, Harvey KA, Pavlina TM, Becker MJ, Zaloga GP. Comparative study of the modulation of fructose/sucrose-induced hepatic steatosis by mixed lipid formulations varying in unsaturated fatty acid content. Nutr Metab. 2015;12:41.

    Google Scholar 

  35. 35.

    Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M, Weiss EJ. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology. 2016;157:570–85.

    CAS  PubMed  Google Scholar 

  36. 36.

    Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer. 2007;7:281–94.

    CAS  PubMed  Google Scholar 

  37. 37.

    Colon-Gonzalez F, Kazanietz MG. C1 domains exposed: from diacylglycerol binding to protein-protein interactions. Biochim Biophys Acta. 2006;1761:827–37.

    CAS  PubMed  Google Scholar 

  38. 38.

    Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI, et al. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res. 2004;64:4394–99.

    CAS  PubMed  Google Scholar 

  39. 39.

    Yamashita T, Honda M, Takatori H, Nishino R, Minato H, Takamura H, et al. Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol. 2009;50:100–10.

    CAS  PubMed  Google Scholar 

  40. 40.

    Fu SN, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473:528–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Jornayvaz FR, Shulman GI. Diacylglycerol activation of protein kinase C epsilon and hepatic insulin resistance. Cell Metab. 2012;15:574–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zakikhani M, Blouin MJ, Piura E, Pollak MN. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat. 2010;123:271–79.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Health Research Institutes, Taiwan (NHRI-EX104-10438SI), the Ministry of Science and Technology, Taiwan (MOST 107-2321-B-001-025, 107-3017-F-002-002), and “Center of Precision Medicine” from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan (NTU-107L9014-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiou-Hwei Yeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Chen, K., Kuo, H. et al. Specific diacylglycerols generated by hepatic lipogenesis stimulate the oncogenic androgen receptor activity in male hepatocytes. Int J Obes 43, 2469–2479 (2019). https://doi.org/10.1038/s41366-019-0431-z

Download citation

Further reading