Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prediction of protein structure and AI

Abstract

AlphaFold, an artificial intelligence (AI)-based tool for predicting the 3D structure of proteins, is now widely recognized for its high accuracy and versatility in the folding of human proteins. AlphaFold is useful for understanding structure-function relationships from protein 3D structure models and can serve as a template or a reference for experimental structural analysis including X-ray crystallography, NMR and cryo-EM analysis. Its use is expanding among researchers, not only in structural biology but also in other research fields. Researchers are currently exploring the full potential of AlphaFold-generated protein models. Predicting disease severity caused by missense mutations is one such application. This article provides an overview of the 3D structural modeling of AlphaFold based on deep learning techniques and highlights the challenges in predicting the pathogenicity of missense mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AlphaFold model of a G-protein coupled receptor MC1R (melanocyte-stimulating hormone receptor).
Fig. 2: AlphaFold model of a two-domain protein galectin-8 (LGALS8).
Fig. 3: Prediction of missense pathogenicity by AlphaMissense [30].

Similar content being viewed by others

References

  1. Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181:223–30.

    Article  CAS  PubMed  Google Scholar 

  2. Levinthal C. Are there pathways for protein folding? J Chim Phys. 1968;65:44–45.

    Article  Google Scholar 

  3. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Applying and improving AlphaFold at CASP14. Proteins. 2021;89:1711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2021;50:D439–D44.

    Article  PubMed Central  Google Scholar 

  6. Consortium TU. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022;51:D523–D31.

    Article  Google Scholar 

  7. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, et al. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51:D488–D508.

    Article  CAS  PubMed  Google Scholar 

  8. Mariani V, Biasini M, Barbato A, Schwede T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics. 2013;29:2722–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilson CJ, Choy WY, Karttunen M. AlphaFold2: a role for disordered protein/region prediction? Int J Mol Sci. 2022;23:4591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo H-B, Perminov A, Bekele S, Kedziora G, Farajollahi S, Varaljay V, et al. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci Rep. 2022;12:10696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akdel M, Pires DEV, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, et al. A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol. 2022;29:1056–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bludau I, Willems S, Zeng WF, Strauss MT, Hansen FM, Tanzer MC, et al. The structural context of posttranslational modifications at a proteome-wide scale. PLoS Biol. 2022;20:e3001636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins: Struct, Funct, Bioinforma. 2004;57:702–10.

    Article  CAS  Google Scholar 

  14. Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2022:2021.10.04.463034.

  15. Buel GR, Walters KJ. Can AlphaFold2 predict the impact of missense mutations on structure? Nat Struct Mol Biol. 2022;29:1–2.

    Article  CAS  PubMed  Google Scholar 

  16. Pak MA, Markhieva KA, Novikova MS, Petrov DS, Vorobyev IS, Maksimova ES, et al. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS One. 2023;18:e0282689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Keskin Karakoyun H, Yuksel SK, Amanoglu I, Naserikhojasteh L, Yesilyurt A, Yakicier C, et al. Evaluation of AlphaFold structure-based protein stability prediction on missense variations in cancer. Front Genet. 2023;14:1052383.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hekkelman ML, de Vries I, Joosten RP, Perrakis A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat Methods. 2023;20:205–13.

    Article  CAS  PubMed  Google Scholar 

  19. Bryant P, Pozzati G, Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nat Commun. 2022;13:1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bryant P, Pozzati G, Zhu W, Shenoy A, Kundrotas P, Elofsson A. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat Commun. 2022;13:6028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Drake ZC, Seffernick JT, Lindert S. Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling. Nat Commun. 2022;13:7846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bryant P. Deep learning for protein complex structure prediction. Curr Opin Struct Biol. 2023;79:102529.

    Article  CAS  PubMed  Google Scholar 

  23. Gao M, Nakajima An D, Parks JM, Skolnick J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat Commun. 2022;13:1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konc J, Janežič D. ProBiS-fold approach for annotation of human structures from the alphafold database with no corresponding structure in the PDB to discover new druggable binding sites. J Chem Inf Model. 2022;62:5821–29.

    Article  CAS  PubMed  Google Scholar 

  25. Ruffolo JA, Chu L-S, Mahajan SP, Gray JJ. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat Commun. 2023;14:2389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruffolo JA, Sulam J, Gray JJ. Antibody structure prediction using interpretable deep learning. Patterns. 2022;3:100406.

    Article  CAS  PubMed  Google Scholar 

  27. Yin R, Pierce BG Evaluation of AlphaFold Antibody-Antigen Modeling with Implications for Improving Predictive Accuracy. bioRxiv. 2023.

  28. Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE. Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J Mol Biol. 2019;431:2197–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iqbal S, Ge F, Li F, Akutsu T, Zheng Y, Gasser RB, et al. PROST: AlphaFold2-aware sequence-based predictor to estimate protein stability changes upon missense mutations. J Chem Inf Model. 2022;62:4270–82.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng J, Novati G, Pan J, Bycroft C, Zemgulyte A, Applebaum T, et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science. 2023;381:eadg7492.

    Article  CAS  PubMed  Google Scholar 

  31. Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B, Hart J, et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 2020;48:D835–d44.

    Article  CAS  PubMed  Google Scholar 

  32. Vacic V, Iakoucheva LM. Disease mutations in disordered regions-exception to the rule? Mol Biosyst. 2012;8:27–32.

    Article  CAS  PubMed  Google Scholar 

  33. Meyer K, Kirchner M, Uyar B, Cheng JY, Russo G, Hernandez-Miranda LR, et al. Mutations in disordered regions can cause disease by creating dileucine motifs. Cell. 2018;175:239–53.e17.

    Article  CAS  PubMed  Google Scholar 

  34. Pentony MM, Ward J, Jones DT. Computational resources for the prediction and analysis of native disorder in proteins. Methods Mol Biol. 2010;604:369–93.

    Article  CAS  PubMed  Google Scholar 

  35. Vacic V, Markwick PR, Oldfield CJ, Zhao X, Haynes C, Uversky VN, et al. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder. PLoS Comput Biol. 2012;8:e1002709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mort M, Evani US, Krishnan VG, Kamati KK, Baenziger PH, Bagchi A, et al. In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Hum Mutat. 2010;31:335–46.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou JB, Xiong Y, An K, Ye ZQ, Wu YD. IDRMutPred: predicting disease-associated germline nonsynonymous single nucleotide variants (nsSNVs) in intrinsically disordered regions. Bioinformatics. 2020;36:4977–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ragonis-Bachar P, Landau M. Functional and pathological amyloid structures in the eyes of 2020 cryo-EM. Curr Opin Struct Biol. 2021;68:184–93.

    Article  CAS  PubMed  Google Scholar 

  39. Lutter L, Aubrey LD, Xue WF. On the structural diversity and individuality of polymorphic amyloid protein assemblies. J Mol Biol. 2021;433:167124.

    Article  CAS  PubMed  Google Scholar 

  40. Li D, Liu C. Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Nat Chem Biol. 2021;17:237–45.

    Article  CAS  PubMed  Google Scholar 

  41. Scheres SHW, Ryskeldi-Falcon B, Goedert M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature. 2023;621:701–10.

    Article  CAS  PubMed  Google Scholar 

  42. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, et al. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science. 2013;340:479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Di Costanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C, Saredi S, et al. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet. 2014;23:5781–92.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ardicli D, Gocmen R, Talim B, Sprute R, Haliloglu G, Cirak S, et al. Congenital mirror movements in a patient with alpha-dystroglycanopathy due to a novel POMK mutation. Neuromuscul Disord. 2017;27:239–42.

    Article  PubMed  Google Scholar 

  45. Strang-Karlsson S, Johnson K, Topf A, Xu L, Lek M, MacArthur DG, et al. A novel compound heterozygous mutation in the POMK gene causing limb-girdle muscular dystrophy-dystroglycanopathy in a sib pair. Neuromuscul Disord. 2018;28:614–18.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nagae M, Mishra SK, Neyazaki M, Oi R, Ikeda A, Matsugaki N, et al. 3D structural analysis of protein O-mannosyl kinase, POMK, a causative gene product of dystroglycanopathy. Genes Cells. 2017;22:348–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Yamaguchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohno, S., Manabe, N. & Yamaguchi, Y. Prediction of protein structure and AI. J Hum Genet (2024). https://doi.org/10.1038/s10038-023-01215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-023-01215-4

Search

Quick links