Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Angiogenesis related genes in Takayasu Arteritis (TAK): robust association with Tag SNPs of IL-18 and FGF-2 in a South Asian Cohort

Abstract

We performed genetic association study for genes encoding angiogenic and angiostatic proteins in patients with Takayasu arteritis (TAK). A total of 96 SNPs involving 60 genes were studied. Genotyping was performed in Fluidigm 96.96 Dynamic Array chip. All statistical analysis for SNP evaluation was performed using PLINK software. Initial analyses revealed five SNPs from three genes [IL-18 (encodes Interleukin-18), FGF2 (encodes Fibroblast Growth Factor-2), and ANGPT1 (encodes Angiopoietin-1)] as significantly different between controls and cases (uncorrected p < 0.05). After permutation-based analysis, two tag SNPs on the promoter region of IL-18 (rs187238 and rs1946518) and one 3’UTR tag SNP (rs1476217) of FGF2 were significantly associated with susceptibility to TAK, with p and OR (95% CI) of 0.0006 and 1.64 (1.25–2.17), 0.03 and 1.28 (1.02–1.64) & 0.016 and 1.33 (1.05–1.67), respectively; while, the two tag SNPs of ANGPT1 gene (rs6469101 and rs16875900) showed a trend (p = 0.055 & p = 0.051, respectively after permutation based correction). There is robust linkage disequilibrium between the two tag SNPs of IL-18 gene as validated by 1000 genome data of South Asian population; the eQTL effects of these tag SNPs of IL-18 and FGF2 genes on adjacent genes further suggest that these tag SNPs act as genetic risks for development of TAK in South Asians, with possible functional implications towards future biomarker development. Genotype phenotype study by genetic model-based analysis also revealed associations between genotype subsets and clinical features like fever, visual loss, left subclavian and coronary artery involvement in our TAK patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Arnaud L, Haroche J, Mathian A, Gorochov G, Amoura Z. Pathogenesis of Takayasu’s arteritis: a 2011 update. Autoimmun Rev. 2011;11:61–7.

    Article  CAS  PubMed  Google Scholar 

  2. Numano F. The story of Takayasu arteritis. Rheumatol Oxf Engl. 2002;41:103–6.

    Article  CAS  Google Scholar 

  3. Kaiser M, Younge B, Björnsson J, Goronzy JJ, Weyand CM. Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. Am J Pathol. 1999;155:765–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weyand CM, Goronzy JJ. Arterial wall injury in giant cell arteritis. Arthritis Rheum. 1999;42:844–53.

    Article  CAS  PubMed  Google Scholar 

  5. Weyand CM, Goronzy JJ. Immune mechanisms in medium and large-vessel vasculitis. Nat Rev Rheumatol. 2013;9:731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Szekanecz Z, Koch AE. Mechanisms of Disease: angiogenesis in inflammatory diseases. Nat Clin Pr Rheumatol. 2007;3:635–43.

    Article  CAS  Google Scholar 

  7. Pulsatelli L, Boiardi L, Assirelli E, Pazzola G, Muratore F, Addimanda O, et al. Imbalance between angiogenic and anti-angiogenic factors in sera from patients with large-vessel vasculitis. Clin Exp Rheumatol. 2020;38:23–30.

    PubMed  Google Scholar 

  8. Tombetti E, Colombo B, Di Chio MC, Sartorelli S, Papa M, Salerno A, et al. Chromogranin-A production and fragmentation in patients with Takayasu arteritis. Arthritis Res Ther [Internet]. 2016 [cited 2021 Apr 13];18. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987982/.

  9. Renauer P, Sawalha AH The genetics of Takayasu arteritis. Presse Médicale [Internet]. 2017;26. Available from: http://www.sciencedirect.com/science/article/pii/S0755498217303214.

  10. Charoenwongse P, Kangwanshiratada O, Boonnam R, Hoomsindhu U. The association between the HLA antigens and Takayasu’s arteritis in Thai patients. Int J Cardiol. 1998;66:S117–120.

    Article  PubMed  Google Scholar 

  11. Kobayashi Y, Numano F. 3. Takayasu arteritis. Intern Med Tokyo Jpn. 2002;41:44–6.

    Article  CAS  Google Scholar 

  12. Lee SW, Kwon OJ, Park MC, Oh HB, Park YB, Lee SK. HLA alleles in Korean patients with Takayasu arteritis. Clin Exp Rheumatol. 2007;25:S18–22.

    PubMed  Google Scholar 

  13. Mehra NK, Jaini R, Balamurugan A, Kanga U, Prabhakaran D, Jain S, et al. Immunogenetic analysis of Takayasu arteritis in Indian patients. Int J Cardiol. 1998;66:S127–132.

    Article  PubMed  Google Scholar 

  14. Sahin Z, Bıcakcıgil M, Aksu K, Kamali S, Akar S, Onen F, et al. Takayasu’s arteritis is associated with HLA-B*52, but not with HLA-B*51, in Turkey. Arthritis Res Ther. 2012;14:R27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kasuya K, Hashimoto Y, Numano F. Left ventricular dysfunction and HLA Bw52 antigen in Takayasu arteritis. Heart Vessels Suppl. 1992;7:116–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ortiz-Fernández L, Saruhan-Direskeneli G, Alibaz-Oner F, Kaymaz-Tahra S, Coit P, Kong X, et al. Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study. Am J Hum Genet. 2021;108:84–99.

    Article  PubMed  Google Scholar 

  17. Terao C, Yoshifuji H, Kimura A, Matsumura T, Ohmura K, Takahashi M, et al. Two Susceptibility Loci to Takayasu Arteritis Reveal a Synergistic Role of the IL12B and HLA-B Regions in a Japanese Population. Am J Hum Genet. 2013;93:289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arend WP, Michel BA, Bloch DA, Hunder GG, Calabrese LH, Edworthy SM, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 1990;33:1129–34.

    Article  CAS  PubMed  Google Scholar 

  19. Hata A, Noda M, Moriwaki R, Numano F. Angiographic findings of Takayasu arteritis: new classification. Int J Cardiol. 1996;54:S155–163.

    Article  PubMed  Google Scholar 

  20. Goel R, Danda D, Joseph G, Ravindran R, Kumar S, Jayaseelan V, et al. Long-term outcome of 251 patients with Takayasu arteritis on combination immunosuppressant therapy: Single centre experience from a large tertiary care teaching hospital in Southern India. Semin Arthritis Rheum. 2018;47:718–26.

    Article  CAS  PubMed  Google Scholar 

  21. Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet. 2006;38:209–13.

    Article  CAS  PubMed  Google Scholar 

  22. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinforma Oxf Engl. 2015;31:3555–7.

    Article  CAS  Google Scholar 

  24. Wen D, Zhou XL, Du X, Dong JZ, Ma CS. Association of interleukin-18 gene polymorphisms with Takayasu arteritis in a Chinese Han population. Chin Med J (Engl). 2020;133:2315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakanishi K. Unique action of interleukin-18 on T cells and other immune cells. Front Immunol. 2018;9:763.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kobori T, Hamasaki S, Kitaura A, Yamazaki Y, Nishinaka T, Niwa A, et al. Interleukin-18 amplifies macrophage polarization and morphological alteration, leading to excessive angiogenesis. Front Immunol. 2018;9:334.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu W, Tang Q, Jiang H, Ding X, Liu Y, Zhu R, et al. Promoter polymorphism of interleukin-18 in angiographically proven coronary artery disease. Angiology. 2009;60:180–5.

    Article  PubMed  Google Scholar 

  28. Umare V, Pradhan V, Nath S, Rajadhyaksha A, Ghosh K, Nadkarni A. Impact of functional IL-18 polymorphisms on genetic predisposition and diverse clinical manifestations of the disease in Indian SLE patients. Lupus. 2019;28:545–54.

    Article  CAS  PubMed  Google Scholar 

  29. Correlation Between SNPs at the 3’UTR of the FGF2 Gene and Their Interaction with Environmental Factors in Han Chinese Diabetic Peripheral Neuropathy Patients | SpringerLink [Internet]. [cited 2023 Jan 8]. Available from: https://link.springer.com/article/10.1007/s12031-020-01641-5?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound.

  30. Ellman MB, An HS, Muddasani P, Im HJ. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene. 2008;420:82–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J. Comparative evaluation of FGF-2–, VEGF-A–, and VEGF-C–induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res. 2004;94:664–70.

    Article  CAS  PubMed  Google Scholar 

  32. Fukui S, Kuwahara-Takaki A, Ono N, Sato S, Koga T, Kawashiri SY, et al. Serum levels of fibroblast growth factor-2 distinguish Takayasu arteritis from giant cell arteritis independent of age at diagnosis. Sci Rep. 2019;9:688.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Burgner D, Davila S, Breunis WB, Ng SB, Li Y, Bonnard C, et al. A genome-wide association study identifies novel and functionally related susceptibility Loci for Kawasaki disease. PLoS Genet. 2009;5:e1000319.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Breunis WB, Davila S, Shimizu C, Oharaseki T, Takahashi K, van Houdt M, et al. Disruption of vascular homeostasis in patients with Kawasaki disease: involvement of vascular endothelial growth factor and angiopoietins. Arthritis Rheum. 2012;64:306–15.

    Article  CAS  PubMed  Google Scholar 

  35. Wen X, Chen S, Li P, Li J, Wu Z, Li Y, et al. Single nucleotide polymorphisms of IL12B are associated with Takayasu arteritis in Chinese Han population. Rheumatol Int. 2017;37:547–55.

    Article  CAS  PubMed  Google Scholar 

  36. Danda D, Goel R, Danda S, Mohan H, Joseph G, Kabeerdoss J, et al. Interleukin-17F and interleukin-6 gene polymorphisms in Asian Indian patients with Takayasu arteritis. Hum Immunol. 2017;78:515–20.

    Article  CAS  PubMed  Google Scholar 

  37. Saruhan-Direskeneli G, Biçakçigil M, Yilmaz V, Kamali S, Aksu K, Fresko I, et al. Interleukin (IL)-12, IL-2, and IL-6 gene polymorphisms in Takayasu’s arteritis from Turkey. Hum Immunol. 2006;67:735–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Hindumathi Mohan and Babu Raman for collection, storage and processing of blood samples from recruited subjects. Dr. Dolly Daniel, Professor of Transfusion Medicine, Christian Medical College Hospital, Vellore, India for recruitment of healthy donors from Blood Bank.

Funding

This study was funded by the research grant from the Science and Engineering board, Department of Science and Technology to Debashish Danda (SB/SO/HS/170/2013).

Author information

Authors and Affiliations

Authors

Contributions

DD for conceptualising the hypothesis, DD, JK, RG and SD were involved in planning and designing of study; DD, RG, JK, AF were involved in data collection and entry; DD, JK, JL, CS, RG, SKN were involved with statistical analysis of genotyping results; and DD, RG, JK, SD and SKN were involved with manuscript writing and critical analysis.

Corresponding author

Correspondence to Debashish Danda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danda, D., Goel, R., Kabeerdoss, J. et al. Angiogenesis related genes in Takayasu Arteritis (TAK): robust association with Tag SNPs of IL-18 and FGF-2 in a South Asian Cohort. J Hum Genet 69, 13–18 (2024). https://doi.org/10.1038/s10038-023-01198-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01198-2

Search

Quick links