Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole exome sequencing reveal 83 novel Mendelian disorders carrier P/LP variants in Chinese adult patients

Subjects

Abstract

Carrier screening can identify people at risk of conceiving pregnancies affected with inherited genetic disorders or who have a genetic disorder with late or variable onset. Carrier screening based on whole exome sequencing (WES) data can offer more comprehensive assessment than on-target carrier screening tests. A total of 224 Chinese adult patients WES data was analyzed, except positive variants associated with the patients’ major complaint, 378 pathogenic (P) and “likely pathogenic” (LP) variants from 175 adult patients were identified. Whole exome-wide frequency of carriers for Mendelian disorders in Chinese adult patients was about 78.13% in this study, which was lower than the previously reported carrier frequency in healthy population. Contrary to expectations, the number of P or LP variants did not increase with larger chromosome size or decrease with smaller chromosome size. Totally 83 novel P or LP variants were identified which could further expand the carrier variants spectrum of the Chinese population. GJB2: NM_004004.6:c.299_300delAT:p.His100fs*14 and C6:NM_000065.4:c.654T>A:p.Cys218* were found in two or more patients, which might be two underestimated carrier variants in Chinese population. We also found 9 late-onset or atypical symptoms autosomal/X-linked dominant Mendelian disorders causative genes, which were easily overlooked during pathogenicity analysis. These results can provide a strong basis for preventing and avoiding the prevalence rates of birth defects and reducing social and family burdens. By comparing with three different expanded carrier screening gene panels, we further confirmed carrier screening based on WES could offer more comprehensive assessment and WES was applicable for carrier screening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

References

  1. Antonarakis SE. Carrier screening for recessive disorders. Nat Rev Genet. 2019;20:549–61.

    Article  CAS  PubMed  Google Scholar 

  2. Committee Opinion No. 691: carrier screening for genetic conditions. Obstet Gynecol. 2017;129:e41–e55.

  3. Lazarin GA, Goldberg JD. Current controversies in traditional and expanded carrier screening. Curr Opin Obstet Gynecol. 2016;28:136–41.

    Article  PubMed  Google Scholar 

  4. Nazareth SB, Lazarin GA, Goldberg JD. Changing trends in carrier screening for genetic disease in the United States. Prenat Diagn. 2015;35:931–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh K, Bijarnia-Mahay S, Ramprasad VL, Puri RD, Nair S, Sharda S, et al. NGS-based expanded carrier screening for genetic disorders in North Indian population reveals unexpected results - a pilot study. BMC Med Genet. 2020;21:216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beauchamp KA, Johansen Taber KA, Muzzey D. Clinical impact and cost-effectiveness of a 176-condition expanded carrier screen. Genet Med. 2022;24:968.

    Article  CAS  PubMed  Google Scholar 

  7. Sallevelt SCEH, de Koning B, Szklarczyk R, Paulussen ADC, de Die-Smulders CEM, Smeets HJM. A comprehensive strategy for exome-based preconception carrier screening. Genet Med. 2017;19:583–92.

    Article  PubMed  Google Scholar 

  8. Chen W, Li W, Ma Y, Zhang Y, Han B, Liu X, et al. Secondary findings in 421 whole exome-sequenced Chinese children. Hum Genom. 2018;12:42.

    Article  CAS  Google Scholar 

  9. Quaio CRDC, Chung CH, Perazzio SF, Dutra AP, Moreira CM, Filho GMN, et al. Frequency of carriers for rare recessive Mendelian diseases in a Brazilian cohort of 320 patients. Am J Med Genet C Semin Med Genet. 2021;187:364–72.

    Article  CAS  PubMed  Google Scholar 

  10. Bertier G, Hétu M, Joly Y. Unsolved challenges of clinical whole-exome sequencing: a systematic literature review of end-users’ views. BMC Med Genom. 2016;9:52.

    Article  Google Scholar 

  11. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vasimuddin M, Misra S, Li H, Aluru S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In: Proceedings of the IEEE international parallel and distributed processing symposium (IPDPS). 2019;314–24.

  13. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao M, Havrilla JM, Fang L, Chen Y, Peng J, Liu C, et al. Phen2Gene: rapid phenotype-driven gene prioritization for rare diseases. NAR Genom Bioinform. 2020;2:lqaa032.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347:1254806.

    Article  PubMed  Google Scholar 

  21. Jian X, Boerwinkle E, Liu X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 2014;42:13534–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ghosh R, Harrison SM, Rehm HL, Plon SE, Biesecker LG, ClinGen Sequence Variant Interpretation Working Group. Updated recommendation for the benign stand-alone ACMG/AMP criterion. Hum Mutat. 2018;39:1525–30.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL, Biesecker LG, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. 2018;39:1517–24.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 2019;12:3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pejaver V, Byrne AB, Feng BJ, Pagel KA, Mooney SD, Karchin R, et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am J Hum Genet. 2022;109:2163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biesecker LG, Harrison SM, ClinGen Sequence Variant Interpretation Working Group. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med. 2018;20:1687–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Niba ETE, Wijaya YOS, Awano H, Taniguchi N, Takeshima Y, Nishio H, et al. DBS screening for glycogen storage disease type 1a: detection of c.648G>T mutation in G6PC by combination of modified competitive oligonucleotide priming-PCR and melting curve analysis. Int J Neonatal Screen. 2021;7:79.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Martin J, Asan YiY, Alberola T, Rodríguez-Iglesias B, Jiménez-Almazán J, Li Q, et al. Comprehensive carrier genetic test using next-generation deoxyribonucleic acid sequencing in infertile couples wishing to conceive through assisted reproductive technology. Fertil Steril. 2015;104:1286–93.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Y, Huang S, Zhang Y, Fang N, Liu Q, Liu Y, et al. Evolutionary origin of pathogenic GJB2 alleles in China. Clin Genet. 2022;102:305–13.

    Article  CAS  PubMed  Google Scholar 

  31. Yang X, Liu N, Mu H, Lv Y, Zhang H, Li Y, et al. Reprogramming of human peripheral blood mononuclear cell (PBMC) from a patient suffering from hearing loss into iPSC line (SDQLCHi035-A) maintaining compound heterozygous variations in GJB2 gene. Stem Cell Res. 2021;51:102188.

    Article  CAS  PubMed  Google Scholar 

  32. Sun F, Zhang RJ, Cheng F, Fang Y, Yang RM, Ye XP, et al. Correlation of DUOX2 residual enzymatic activity with phenotype in congenital hypothyroidism caused by biallelic DUOX2 defects. Clin Genet. 2021;100:713–21.

    Article  CAS  PubMed  Google Scholar 

  33. Tang L, Lu X, Yu JM, Wang QY, Yang R, Guo T, et al. PROC c.574_576del polymorphism: a common genetic risk factor for venous thrombosis in the Chinese population. J Thromb Haemost. 2012;10:2019–26.

    Article  CAS  PubMed  Google Scholar 

  34. Pathak SJ, Mueller JL, Okamoto K, Das B, Hertecant J, Greenhalgh L, et al. EPCAM mutation update: variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat. 2019;40:142–61.

    Article  CAS  PubMed  Google Scholar 

  35. Ayyıldız Civan H, Leitner C, Östreicher I, Schneider AM, Cremer M, Mayr JA, et al. Three Novel EPCAM variants causing tufting enteropathy in three families. Children. 2021;8:503.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schnell U, Kuipers J, Mueller JL, Veenstra-Algra A, Sivagnanam M, Giepmans BN. Absence of cell-surface EpCAM in congenital tufting enteropathy. Hum Mol Genet. 2013;22:2566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng J, Zhang Y, Yang X, Zhang Y. Heterogeneous spectrum of CFTR gene mutations in Chinese patients with CAVD and the dilemma of genetic blocking strategy. Reproduction. 2022;164:R47–56.

    Article  CAS  PubMed  Google Scholar 

  38. Hefferon TW, Groman JD, Yurk CE, Cutting GR. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci USA 2004;101:3504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun Y, Qiang W, Wu R, Yin T, Yuan J, Yuan J, et al. A glycogen storage disease type 1a patient with type 2 diabetes. BMC Med Genom. 2022;15:205.

    Article  CAS  Google Scholar 

  40. Gallego CJ, Burt A, Sundaresan AS, Ye Z, Shaw C, Crosslin DR, et al. Penetrance of hemochromatosis in HFE genotypes resulting in p.Cys282Tyr and p.[Cys282Tyr];[His63Asp] in the eMERGE network. Am J Hum Genet. 2015;97:512–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Drakesmith H, Sweetland E, Schimanski L, Edwards J, Cowley D, Ashraf M, et al. The hemochromatosis protein HFE inhibits iron export from macrophages. Proc Natl Acad Sci USA 2002;99:15602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tomatsu S, Orii KO, Fleming RE, Holden CC, Waheed A, Britton RS, et al. Contribution of the H63D mutation in HFE to murine hereditary hemochromatosis. Proc Natl Acad Sci USA 2003;100:15788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ravine D, Cooper DN. Adult-onset genetic disease: mechanisms, analysis and prediction. QJM. 1997;90:83–103.

    Article  CAS  PubMed  Google Scholar 

  44. Wright A, Charlesworth B, Rudan I, Carothers A, Campbell H. A polygenic basis for late-onset disease. Trends Genet. 2003;19:97–106.

    Article  CAS  PubMed  Google Scholar 

  45. Evans NS, Ray J, Prather C. Atypical autosomal-dominant inheritance of familial mediterranean fever. ACG Case Rep J. 2021;8:e00525.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

First, we sincerely thank all the participants in this study for their cooperation and support. We thank many doctors from our department of echocardiography and neurology, who contributed to the recruitment and clinical follow-up. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81972000, No. 82172348, No. 81902139, No. 82202607), the constructing project of clinical key disciplines in Shanghai (No. shslczdzk03302), Shanghai Medical Key Specialty (ZK2019B28), the key medical and health projects of Xiamen (No. YDZX20193502000002).

Author information

Authors and Affiliations

Authors

Contributions

LZ and LY wrote the main manuscript text and prepared Figs. 13. XS, JD, JZ, and CZ provided clinical samples, BW, CZ, WG, and BP designed the research. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Chunyan Zhang or Beili Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yu, L., Shu, X. et al. Whole exome sequencing reveal 83 novel Mendelian disorders carrier P/LP variants in Chinese adult patients. J Hum Genet 68, 737–743 (2023). https://doi.org/10.1038/s10038-023-01179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01179-5

Search

Quick links