Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GLUT9 as a potential drug target for chronic kidney disease: Drug target validation by a Mendelian randomization study

Abstract

Although chronic kidney disease (CKD) is recognized as a major public health concern, effective treatment strategies have yet to be developed. Identification and validation of drug targets are key issues in the development of therapeutic agents for CKD. Uric acid (UA), a major risk factor for gout, has also been suggested to be a risk factor for CKD, but the efficacy of existing urate-lowering therapies for CKD is controversial. We focused on five uric acid transporters (ABCG2, SLC17A1, SLC22A11, SLC22A12, SLC2A9) as potential drug targets and evaluated the causal association between serum UA levels and estimated glomerular filtration rate (eGFR) using single-SNP Mendelian Randomization. The results showed a causal association between genetically predicted changes in serum UA levels and eGFR when genetic variants were selected from the SLC2A9 locus. Estimation based on a loss-of-function mutation (rs16890979) showed that the changes in eGFR per unit increase in serum UA level was −0.0082 ml/min/1.73 m2 (95% CI −0.014 to −0.0025, P = 0.0051). These results indicate that SLC2A9 may be a novel drug target for CKD that preserves renal function through its urate-lowering effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

All summary statistics data used in this study are freely available through MR-Base (URL: https://www.mrbase.org/) [26].

References

  1. Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet 2017;389:1238–52.

    Google Scholar 

  2. Garcia Sanchez JJ, Thompson J, Scott DA, Evans R, Rao N, Sorstadius E, et al. Treatments for Chronic Kidney Disease: A Systematic Literature Review of Randomized Controlled Trials. Adv Ther. 2022;39:193–220.

    CAS  PubMed  Google Scholar 

  3. Collaboration GBDCKD. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020;395:709–33.

    Google Scholar 

  4. Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R. Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol. 2008;19:2407–13.

    PubMed  PubMed Central  Google Scholar 

  5. Levy G, Shi JM, Cheetham TC, Rashid N. Urate-lowering therapy in moderate to severe chronic kidney disease. Perm J 2018;22:17–142.

    PubMed  PubMed Central  Google Scholar 

  6. Hsu YO, Wu IW, Chang SH, Lee CC, Tsai CY, Lin CY, et al. Comparative Renoprotective Effect of Febuxostat and Allopurinol in Predialysis Stage 5 Chronic Kidney Disease Patients: A Nationwide Database Analysis. Clin Pharm Ther. 2020;107:1159–69.

    CAS  Google Scholar 

  7. Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, et al. Febuxostat therapy for patients with Stage 3 CKD and asymptomatic hyperuricemia: A randomized trial. Am J Kidney Dis. 2018;72:798–810.

    CAS  Google Scholar 

  8. Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, et al. Effects of Allopurinol on the progression of chronic kidney disease. N. Engl J Med. 2020;382:2504–13.

    CAS  Google Scholar 

  9. Tsukamoto S, Okami N, Yamada T, Azushima K, Yamaji T, Kinguchi S, et al. Prevention of kidney function decline using uric acid-lowering therapy in chronic kidney disease patients: a systematic review and network meta-analysis. Clin Rheumatol. 2022;41:911–9.

    Google Scholar 

  10. Sato Y, Feig DI, Stack AG, Kang DH, Lanaspa MA, Ejaz AA, et al. The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nat Rev Nephrol. 2019;15:767–75.

    CAS  PubMed  Google Scholar 

  11. White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, et al. Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. N. Engl J Med. 2018;378:1200–10.

    CAS  PubMed  Google Scholar 

  12. Jansen TL, Reinders MK, van Roon EN, Brouwers JR. Benzbromarone withdrawn from the European market: another case of “absence of evidence is evidence of absence”? Clin Exp Rheumatol. 2004;22:651.

    PubMed  Google Scholar 

  13. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60.

    CAS  PubMed  Google Scholar 

  14. King EA, Davis JW, Degner JF. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 2019;15:e1008489.

    PubMed  PubMed Central  Google Scholar 

  15. Roberts R. Mendelian randomization studies promise to shorten the journey to FDA approval. JACC Basic Transl Sci. 2018;3:690–703.

    PubMed Central  Google Scholar 

  16. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey, Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.

    PubMed  Google Scholar 

  17. Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, Mewada A, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: A Mendelian randomization analysis. J Am Coll Cardiol. 2012;60:2631–9.

    CAS  PubMed  Google Scholar 

  18. Burgess S, Harshfield E. Mendelian randomization to assess causal effects of blood lipids on coronary heart disease: lessons from the past and applications to the future. Curr Opin Endocrinol Diabetes Obes. 2016;23:124–30.

    PubMed Central  Google Scholar 

  19. Mokry LE, Ahmad O, Forgetta V, Thanassoulis G, Richards JB. Mendelian randomisation applied to drug development in cardiovascular disease: A review. J Med Genet. 2015;52:71–9.

    CAS  PubMed  Google Scholar 

  20. Gill D, Georgakis MK, Walker VM, Schmidt AF, Gkatzionis A, Freitag DF, et al. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res. 2021;6:16.

    PubMed  PubMed Central  Google Scholar 

  21. Schmidt AF, Finan C, Gordillo-Maranon M, Asselbergs FW, Freitag DF, Patel RS, et al. Genetic drug target validation using Mendelian randomisation. Nat Commun. 2020;11:3255.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lloyd DJ, St Jean DJ Jr, Kurzeja RJ, Wahl RC, Michelsen K, Cupples R, et al. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature 2013;504:437–40.

    CAS  PubMed  Google Scholar 

  23. Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L, et al. The Human Gene Mutation Database (HGMD((R))): optimizing its use in a clinical diagnostic or research setting. Hum Genet. 2020;139:1197–207.

    PubMed  PubMed Central  Google Scholar 

  24. Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun. 2016;7:10023.

    CAS  PubMed Central  Google Scholar 

  25. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018;562:203–9.

    CAS  PubMed Central  Google Scholar 

  26. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018;7:e34408.

    PubMed  PubMed Central  Google Scholar 

  27. Walker VM, Davies NM, Hemani G, Zheng J, Haycock PC, Gaunt TR, et al. Using the MR-Base platform to investigate risk factors and drug targets for thousands of phenotypes. Wellcome Open Res. 2019;4:113.

    PubMed Central  Google Scholar 

  28. Ruiz A, Gautschi I, Schild L, Bonny O. Human Mutations in SLC2A9 (Glut9) Affect Transport Capacity for Urate. Front Physiol. 2018;9:476.

    PubMed  PubMed Central  Google Scholar 

  29. Chiba T, Matsuo H, Kawamura Y, Nagamori S, Nishiyama T, Wei L, et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 2015;67:281–7.

    CAS  Google Scholar 

  30. Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Suzuki H, et al. ABCG2/BCRP dysfunction as a major cause of gout. Nucleosides Nucleotides Nucleic Acids. 2011;30:1117–28.

    CAS  Google Scholar 

  31. Sakiyama M, Matsuo H, Shimizu S, Nakashima H, Nakayama A, Chiba T, et al. A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout. Drug Metab Pharmacokinet. 2014;29:208–10.

    CAS  Google Scholar 

  32. Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437–42.

    CAS  Google Scholar 

  33. Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008;283:26834–8.

    CAS  PubMed  Google Scholar 

  34. Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008;83:744–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sorensen LB. Role of the intestinal tract in the elimination of uric acid. Arthritis Rheum. 1965;8:694–706.

    CAS  PubMed  Google Scholar 

  36. Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764.

    Google Scholar 

  37. Matsuo H, Tsunoda T, Ooyama K, Sakiyama M, Sogo T, Takada T, et al. Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2. Sci Rep. 2016;6:31003.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsuo H, Nakayama A, Sakiyama M, Chiba T, Shimizu S, Kawamura Y, et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci Rep. 2014;4:3755.

    PubMed  PubMed Central  Google Scholar 

  39. DeBosch BJ, Kluth O, Fujiwara H, Schurmann A, Moley K. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat Commun. 2014;5:4642.

    CAS  PubMed  Google Scholar 

  40. Yin H, Liu N, Chen J. The Role of the Intestine in the Development of Hyperuricemia. Front Immunol. 2022;13:845684.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dehghan A, Kottgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008;372:1953–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45:145–54. logistic (gout) regression adjusted for age, sex, principal components and study center if applicable in the individual GWAS

    PubMed  Google Scholar 

  43. Yang Q, Kottgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3:523–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5:e1000504. MetaAnalysis

    PubMed  PubMed Central  Google Scholar 

  45. Sulem P, Gudbjartsson DF, Walters GB, Helgadottir HT, Helgason A, Gudjonsson SA, et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat Genet. 2011;43:1127–30.

    CAS  PubMed  Google Scholar 

  46. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010;466:707–13.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the participants, staffs, and investigators of the contributing consortiums, including CKDGen, UK biobank and Bristol University for developing MR base platform. M.U. thank ASCA Corporation (http://www.asca-co.com/english_site/) for proofreading a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MU designed research, performed statistical analysis, and wrote the manuscript. MU, KF, SK, and NK discussed and interpreted results. AM, JN, TS, MM, SK, and NK provided critical feedback and revision of this work. All of the authors approved the final version of this work.

Corresponding author

Correspondence to Masatoshi Ueda.

Ethics declarations

Competing interests

MU, KF, AM, JN TS, and MM are employees of JAPAN TOBACCO INC. SK and NK has received consulting fees from JAPAN TOBACCO INC.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueda, M., Fukui, K., Kamatani, N. et al. GLUT9 as a potential drug target for chronic kidney disease: Drug target validation by a Mendelian randomization study. J Hum Genet 68, 699–704 (2023). https://doi.org/10.1038/s10038-023-01168-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01168-8

Search

Quick links