Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Major brain malformations: corpus callosum dysgenesis, agenesis of septum pellucidum and polymicrogyria in patients with BCORL1-related disorders

Abstract

Objective

BCORL1, a transcriptional co-repressor, has a role in cortical migration, neuronal differentiation, maturation, and cerebellar development. We describe BCORL1 as a new genetic cause for major brain malformations.

Methods and results

We report three patients from two unrelated families with neonatal onset intractable epilepsy and profound global developmental delay. Brain MRI of two siblings from the first family depicted hypoplastic corpus callosum and septal agenesis (ASP) in the older brother and unilateral perisylvian polymicrogyria (PMG) in the younger one. MRI of the patient from the second family demonstrated complete agenesis of corpus callosum (CC). Whole Exome Sequencing revealed a novel hemizygous variant in NM_021946.5 (BCORL1):c.796C>T (p.Pro266Ser) in the two siblings from the first family and the NM_021946.5 (BCORL1): c.3376G>A; p.Asp1126Asn variant in the patient from the second family, both variants inherited from healthy mothers. We reviewed the patients’ charts and MRIs and compared the phenotype to the other published BCORL1-related cases. Brain malformations have not been previously described in association with the BCORL1 phenotype. We discuss the potential influence of BCORL1 on brain development.

Conclusions

We suggest that BCORL1 variants present with a spectrum of neurodevelopmental disorders and can lead to major brain malformations originating at different stages of fetal development. We suggest adding BCORL1 to the genetic causes of PMG, ASP, and CC dysgenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Schuurs-Hoeijmakers JH, Vulto-van Silfhout AT, Vissers LE, van de Vondervoort II, van Bon BW, de Ligt J, et al. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing. J Med Genet. 2013;50:802–11.

    Article  PubMed  CAS  Google Scholar 

  2. Shukla A, Girisha KM, Somashekar PH, Nampoothiri S, McClellan R, Vernon HJ. Variants in the transcriptional corepressor BCORL1 are associated with an X-linked disorder of intellectual disability, dysmorphic features, and behavioral abnormalities. Am J Med Genet A. 2019;179:870–4.

    PubMed  CAS  Google Scholar 

  3. Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome qsequencing. Am J Hum Genet. 2013;93:249–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Muthusamy B, Bellad A, Girimaji SC, Pandey A. Shukla-Vernon syndrome: a second family with a novel variant in the BCORL1 gene. Genes. 2021;12:452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58:512–21.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yakovlev PI, Locke S. Limbic nuclei of thalamus and connections of limbic cortex. III. Corticocortical connections of the anterior cingulate gyrus, the cingulum, and the subcallosal bundle in monkey. Arch Neurol. 1961;5:364–400.

    Article  PubMed  CAS  Google Scholar 

  7. Yakovlev PI, Wadsworth RC. Schizencephalies; a study of the congenital clefts in the cerebral mantle; clefts with hydrocephalus and lips separated. J Neuropathol Exp Neurol. 1946;5:169–206.

    Article  PubMed  CAS  Google Scholar 

  8. Aicardi J, Goutières F. The syndrome of absence of the septum pellucidum with porencephalies and other developmental defects. Neuropediatrics. 1981;12:319–29.

    Article  PubMed  CAS  Google Scholar 

  9. Barkovich AJ, Norman D. Absence of the septum pellucidum: a useful sign in the diagnosis of congenital brain malformations. AJR Am J Roentgenol. 1989;152:353–60.

    Article  PubMed  CAS  Google Scholar 

  10. Schaefer GB, Bodensteiner JB, Thompson JN Jr, Kimberling WJ, Craft JM. Subtle anomalies of the septum pellucidum and neurodevelopmental deficits. Dev Med Child Neurol. 1994;36:554–9.

    Article  PubMed  CAS  Google Scholar 

  11. Malinger G, Lev D, Kidron D, Heredia F, Hershkovitz R, Lerman-Sagie T. Differential diagnosis in fetuses with absent septum pellucidum. Ultrasound Obstet Gynecol. 2005;25:42–9.

    Article  PubMed  CAS  Google Scholar 

  12. McCabe MJ, Alatzoglou KS, Dattani MT. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab. 2011;25:115–24.

    Article  PubMed  CAS  Google Scholar 

  13. Webb EA, Dattani MT. Septo-optic dysplasia. Eur J Hum Genet. 2010;18:393–7.

    Article  PubMed  Google Scholar 

  14. Kelberman D, Rizzoti K, Avilion A, Bitner-Glindzicz M, Cianfarani S, Collins J, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Investig. 2006;116:2442–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Alatzoglou KS, Kelberman D, Dattani MT. The role of SOX proteins in normal pituitary development. J Endocrinol. 2009;200:245–58.

    Article  PubMed  CAS  Google Scholar 

  16. Ganau M, Huet S, Syrmos N, Meloni M, Jayamohan J. Neuro-ophthalmological manifestations of septo-optic dysplasia: current perspectives. Eye Brain. 2019;11:37–47.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cohen RN, Cohen LE, Botero D, Yu C, Sagar A, Jurkiewicz M, et al. Enhanced repression by HESX1 as a cause of hypopituitarism and septooptic dysplasia. J Clin Endocrinol Metab. 2003;88:4832–9.

    Article  PubMed  CAS  Google Scholar 

  18. Judkins AR, Martinez D, Ferreira P, Dobyns WB, Golden JA. Polymicrogyria includes fusion of the molecular layer and decreased neuronal populations but normal cortical laminar organization. J Neuropathol Exp Neurol. 2011;70:438–43.

    Article  PubMed  Google Scholar 

  19. Leventer RJ, Jansen A, Pilz DT, Stoodley N, Marini C, Dubeau F, et al. Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain. 2010;133:1415–27.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dvorak K, Feit J, Juránková Z. Experimentally induced focal microgyria and status verrucosus deformis in rats–pathogenesis and interrelation. Histological and autoradiographical study. Acta Neuropathol. 1978;44:121–9.

    Article  PubMed  CAS  Google Scholar 

  21. Choe Y, Siegenthaler JA, Pleasure SJ. A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation. Neuron. 2012;73:698–712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Eriksson SH, Thom M, Heffernan J, Lin WR, Harding BN, Squier MV, et al. Persistent reelin-expressing Cajal-Retzius cells in polymicrogyria. Brain. 2001;124:1350–61.

    Article  PubMed  CAS  Google Scholar 

  23. Barkovich AJ. Current concepts of polymicrogyria. Neuroradiology. 2010;52:479–87.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Siegenthaler JA, Ashique AM, Zarbalis K, Patterson KP, Hecht JH, Kane MA, et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell. 2009;139:597–609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Squier W, Jansen A. Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathol Commun. 2014;2:80.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zarbalis K, Choe Y, Siegenthaler JA, Orosco LA, Pleasure SJ. Meningeal defects alter the tangential migration of cortical interneurons in Foxc1hith/hith mice. Neural Dev. 2012;7:2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. López-Bendito G, Sánchez-Alcañiz JA, Pla R, Borrell V, Picó E, Valdeolmillos M, et al. Chemokine signaling controls intracortical migration and final distribution of GABAergic interneurons. J Neurosci. 2008;28:1613–24.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Siejka S, Strefling AM, Urich H. Absence of septum pellucidum and polymicrogyria: a forme fruste of the porencephalic syndrome. Clin Neuropathol. 1989;8:174–8.

    PubMed  CAS  Google Scholar 

  29. Labate A, Gambardella A, Quattrone A. Septo-optic dysplasia plus bilateral perisylvian polymicrogyria: a case report. Neurol Sci. 2013;34:1479–80.

    Article  PubMed  Google Scholar 

  30. Becker PS, Dixon AM, Troncoso JC. Bilateral opercular polymicrogyria. Ann Neurol. 1989;25:90–2.

    Article  PubMed  CAS  Google Scholar 

  31. Mellado C, Poduri A, Gleason D, Elhosary PC, Barry BJ, Partlow JN, et al. Candidate gene sequencing of LHX2, HESX1, and SOX2 in a large schizencephaly cohort. Am J Med Genet A. 2010;152a:2736–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pagan JK, Arnold J, Hanchard KJ, Kumar R, Bruno T, Jones MJ, et al. A novel corepressor, BCoR-L1, represses transcription through an interaction with CtBP. J Biol Chem. 2007;282:15248–57.

    Article  PubMed  CAS  Google Scholar 

  33. Gabellini D, Tupler R, Green MR. Transcriptional derepression as a cause of genetic diseases. Curr Opin Genet Dev. 2003;13:239–45.

    Article  PubMed  CAS  Google Scholar 

  34. Tiacci E, Grossmann V, Martelli MP, Kohlmann A, Haferlach T, Falini B. The corepressors BCOR and BCORL1: two novel players in acute myeloid leukemia. Haematologica. 2012;97:3–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Damm F, Chesnais V, Nagata Y, Yoshida K, Scourzic L, Okuno Y, et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122:3169–77.

    Article  PubMed  CAS  Google Scholar 

  36. Bonnefont J, Tiberi L, van den Ameele J, Potier D, Gaber ZB, Lin X, et al. Cortical neurogenesis requires Bcl6-mediated transcriptional repression of multiple self-renewal-promoting extrinsic pathways. Neuron 2019;103:1096–108.e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhou D, Xue J, Gavrialov O, Haddad GG. Na+/H+ exchanger 1 deficiency alters gene expression in mouse brain. Physiol Genom. 2004;18:331–9.

    Article  CAS  Google Scholar 

  38. Bedogni F, Hodge RD, Elsen GE, Nelson BR, Daza RA, Beyer RP, et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc Natl Acad Sci USA. 2010;107:13129–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell. 2002;9:213–24.

    Article  PubMed  CAS  Google Scholar 

  40. Karaca E, Li X, Lewicki J, Neofytou C, Guérout N, Barnabé-Heider F, et al. The corepressor CtBP2 is required for proper development of the mouse cerebral cortex. Mol Cell Neurosci. 2020;104:103481.

    Article  PubMed  CAS  Google Scholar 

  41. Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, et al. Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol. 2010;338:202–14.

    Article  PubMed  CAS  Google Scholar 

  42. Redies C, Neudert F, Lin J. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization. Cerebellum. 2011;10:393–408.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank members and affiliates of the International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5, https://www.irc5.org) for their collaboration and input.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final paper and agree to be accountable for all aspects of the work. MG—data curation; writing—original draft. MM—data curation; writing—original draft. EA—data curation. KY—formal genetic analysis. EHS—data curation. KCP—data curation. EME—data curation. RHC—conceptualization. ZL—conceptualization. DL—conceptualization, formal genetic analysis. YMY—conceptualization, formal genetic analysis. TLS—conceptualization, writing—review and editing, supervision. LB—Conceptualization, writing—review and editing, supervision.

Corresponding author

Correspondence to Lubov Blumkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

Informed consent for publication was obtained from participants and their parents.

Ethics approval and consent to participate

The study was approved by the institutional review board [0075-17WOMC]. Informed consent to participate in the study was obtained from legal guardians.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gafner, M., Michelson, M., Argilli, E. et al. Major brain malformations: corpus callosum dysgenesis, agenesis of septum pellucidum and polymicrogyria in patients with BCORL1-related disorders. J Hum Genet 67, 95–101 (2022). https://doi.org/10.1038/s10038-021-00971-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00971-5

This article is cited by

Search

Quick links