Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive genetic analysis confers high diagnostic yield in 16 Japanese patients with corpus callosum anomalies

Abstract

Corpus callosum anomalies (CCA) is a common congenital brain anomaly with various etiologies. Although one of the most important etiologies is genetic factors, the genetic background of CCA is heterogenous and diverse types of variants are likely to be causative. In this study, we analyzed 16 Japanese patients with corpus callosum anomalies to delineate clinical features and the genetic background of CCAs. We observed the common phenotypes accompanied by CCAs: intellectual disability (100%), motor developmental delay (93.8%), seizures (60%), and facial dysmorphisms (50%). Brain magnetic resonance imaging showed colpocephaly (enlarged posterior horn of the lateral ventricles, 84.6%) and enlarged supracerebellar cistern (41.7%). Whole exome sequencing revealed genetic alterations in 9 of the 16 patients (56.3%), including 8 de novo alterations (2 copy number variants and variants in ARID1B, CDK8, HIVEP2, and TCF4) and a recessive variant of TBCK. De novo ARID1B variants were identified in three unrelated individuals, suggesting that ARID1B variants are major genetic causes of CCAs. A de novo TCF4 variant and somatic mosaic deletion at 18q21.31-qter encompassing TCF4 suggest an association of TCF4 abnormalities with CCAs. This study, which analyzes CCA patients usung whole exome sequencing, demonstrates that comprehensive genetic analysis would be useful for investigating various causal variants of CCAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the supplementary material of this article.

References

  1. Raybaud C. Corpus callosum: molecular pathways in mice and human dysgeneses. Neuroimaging Clin N Am. 2019;29:445–59.

    Article  Google Scholar 

  2. van der Knaap LJ, van der Ham IJ. How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res. 2011;223:211–21.

    Article  Google Scholar 

  3. van Wagenen WP, Herren RY. Surgical division of commissural pathways in the corpus callosum. Arch Neurol Psychiatry. 1940;44:740–59.

    Article  Google Scholar 

  4. Gazzaniga MS. Forty-five years of split-brain research and still going strong. Nat Rev Neurosci. 2005;6:653–9.

    Article  CAS  Google Scholar 

  5. Al-Hashim AH, Blaser S, Raybaud C, MacGregor D. Corpus callosum abnormalities: neuroradiological and clinical correlations. Dev Med Child Neurol. 2016;58:475–84.

    Article  Google Scholar 

  6. Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain 2014;137:1579–613.

    Article  Google Scholar 

  7. Sotiriadis A, Makrydimas G. Neurodevelopment after prenatal diagnosis of isolated agenesis of the corpus callosum: an integrative review. Am J Obstet Gynecol. 2012;206:337.

    Article  Google Scholar 

  8. Schell-Apacik CC, Wagner K, Bihler M, Ertl-Wagner B, Heinrich U, Klopocki E, et al. Agenesis and dysgenesis of the corpus callosum: clinical, genetic and neuroimaging findings in a series of 41 patients. Am J Med Genet A 2008;146A:2501–11.

    Article  Google Scholar 

  9. Bedeschi MF, Bonaglia MC, Grasso R, Pellegri A, Garghentino RR, Battaglia MA, et al. Agenesis of the corpus callosum: clinical and genetic study in 63 young patients. Pediatr Neurol. 2006;34:186–93.

    Article  Google Scholar 

  10. Hiraide T, Nakashima M, Ikeda T, Tanaka D, Osaka H, Saitsu H. Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy. J Hum Genet. 2020;65:921–5.

    Article  CAS  Google Scholar 

  11. Shiohama T, Nakashima M, Ikehara H, Kato M, Saitsu H. Low-prevalence mosaicism of chromosome 18q distal deletion identified by exome-based copy number profiling in a child with cerebral hypomyelination. Congenit Anom. 2020;60:94–6.

    Article  CAS  Google Scholar 

  12. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  Google Scholar 

  13. Chong JX, Caputo V, Phelps IG, Stella L, Worgan L, Dempsey JC, et al. Recessive inactivating mutations in TBCK, encoding a Rab GTPase-activating protein, cause severe infantile syndromic encephalopathy. Am J Hum Genet. 2016;98:772–81.

    Article  CAS  Google Scholar 

  14. Bhoj EJ, Li D, Harr M, Edvardson S, Elpeleg O, Chisholm E, et al. Mutations in TBCK, encoding TBC1-domain-containing kinase, lead to a recognizable syndrome of intellectual disability and hypotonia. Am J Hum Genet. 2016;98:782–8.

    Article  CAS  Google Scholar 

  15. Mignot C, Moutard ML, Rastetter A, Boutaud L, Heide S, Billette T, et al. ARID1B mutations are the major genetic cause of corpus callosum anomalies in patients with intellectual disability. Brain 2016;1:e64.

    Article  Google Scholar 

  16. Calpena E, Hervieu A, Kaserer T, Swagemakers SMA, Goos JAC, Popoola O, et al. De novo missense substitutions in the gene encoding CDK8, a regulator of the mediator complex, cause a syndromic developmental disorder. Am J Hum Genet. 2019;4:104.

    Google Scholar 

  17. Goodspeed K, Newsom C, Morris MA, Powell C, Evans P, Golla S. Pitt-Hopkins syndrome: a review of current literature, clinical approach, and 23-patient case series. J Child Neurol. 2018;33:233–44.

  18. Srivastava S, Engels H, Schanze I, Cremer K, Wieland T, Menzel M, et al. Loss-of-function variants in HIVEP2 are a cause of intellectual disability. Eur J Hum Genet. 2016;24:556–61.

    Article  CAS  Google Scholar 

  19. Sajan SA, Fernandez L, Nieh SE, Rider E, Bukshpun P, Wakahiro M, et al. Both rare and de novo copy number variants are prevalent in agenesis of the corpus callosum but not in cerebellar hypoplasia or polymicrogyria. PLoS Genet. 2013;9:e1003823.

    Article  Google Scholar 

  20. Heide S, Keren B, Billette de Villemeur T, Chantot-Bastaraud S, Depienne C, Nava C, et al. Copy number variations found in patients with a corpus callosum abnormality and intellectual disability. J Pediatr. 2017;185:160.

    Article  Google Scholar 

  21. Liao LH, Chen C, Peng J, Wu LW, He F, Yang LF, et al. Diagnosis of intellectual disability/global developmental delay via genetic analysis in a central region of China. Chin Med J. 2019;132:1533–40.

    Article  Google Scholar 

  22. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43:838–46.

    Article  CAS  Google Scholar 

  23. van der Schoot V, de Munnik S, Venselaar H, Elting M, Mancini GMS, Ravenswaaij-Arts CMA, et al. Toward clinical and molecular understanding of pathogenic variants in the ZBTB18 gene. Mol Genet Genom Med. 2018;6:393–400.

    Article  Google Scholar 

  24. Shetty M, Srikanth A, Kadandale J, Hegde S. Pre- and postnatal analysis of chromosome 1q44 deletion in agenesis of corpus callosum. Mol Syndromol. 2015;6:187–92.

    Article  CAS  Google Scholar 

  25. Hasi M, Soileau B, Sebold C, Hill A, Hale DE, O’Donnell L, et al. The role of the TCF4 gene in the phenotype of individuals with 18q segmental deletions. Hum Genet. 2011;130:777–87.

    Article  CAS  Google Scholar 

  26. Phan BN, Bohlen JF, Davis BA, Ye Z, Chen HY, Mayfield B, et al. A myelin-related transcriptomic profile is shared by Pitt-Hopkins syndrome models and human autism spectrum disorder. Nat Neurosci. 2020;23:375–85.

  27. Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, et al. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 2016;139:317–37.

    Article  Google Scholar 

  28. Crino PB. mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med. 2015;5:a022442.

    Article  Google Scholar 

  29. Ortiz-González XR, Tintos-Hernández JA, Keller K, Li X, Foley AR, Bharucha-Goebel DX, et al. Homozygous boricua TBCK mutation causes neurodegeneration and aberrant autophagy. Ann Neurol. 2018;83:153–65.

  30. Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 2013;9:124–37.

    Article  CAS  Google Scholar 

  31. Moffat JJ, Jung EM, Ka M, Smith AL, Jeon BT, Santen GWE, et al. The role of ARID1B, a BAF chromatin remodeling complex subunit, in neural development and behavior. Prog Neuropsychopharmacol Biol Psychiatry. 2019;8:89.

    Google Scholar 

  32. Lieb JM, Ahlhelm FJ. [Agenesis of the corpus callosum]. Radiologe 2018;58:636–45.

    Article  CAS  Google Scholar 

  33. Dutta I, Sharma GN, Singh KP. Transsphenoidal encephalocele, colpocephaly and corpus callosum agenesis in a midline cleft lip and palate patient: a very rare case. Indian J Plast Surg. 2018;51:334–5.

    Article  Google Scholar 

  34. Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene 2009;28:1653–68.

    Article  CAS  Google Scholar 

  35. Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y, et al. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet. 2012;44:376–8.

    Article  CAS  Google Scholar 

  36. Filatova A, Rey LK, Lechler MB, Schaper J, Hempel M, Posmyk R, et al. Mutations in SMARCB1 and in other Coffin-Siris syndrome genes lead to various brain midline defects. Nat Commun. 2019;10:2966.

    Article  Google Scholar 

  37. van der Sluijs PJ, Jansen S, Vergano SA, Adachi-Fukuda M, Alanay Y, AlKindy A, et al. The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin-Siris syndrome. Genet Med. 2019;21:1295–307.

  38. Shimbo H, Yokoi T, Aida N, Mizuno S, Suzumura H, Nagai J, et al. Haploinsufficiency of BCL11A associated with cerebellar abnormalities in 2p15p16.1 deletion syndrome. Mol Genet Genom Med. 2017;5:429–37.

    Article  CAS  Google Scholar 

  39. Huang HT, Chen SM, Pan LB, Yao J, Ma HT. Loss of function of SWI/SNF chromatin remodeling genes leads to genome instability of human lung cancer. Oncol Rep. 2015;33:283–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patient’s family for participating in this study. The authors also thank K. Shibazaki, M. Tsujimura, and A. Kitamoto for their technical assistance. This study was supported by Grant‐in‐Aid from the Ministry of Health, Labour and Welfare of Japan, the Takeda Science Foundation, and HUSM Grant-in-Aid from Hamamatsu University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitsuko Nakashima or Hirotomo Saitsu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, S., Kato, M., Hiraide, T. et al. Comprehensive genetic analysis confers high diagnostic yield in 16 Japanese patients with corpus callosum anomalies. J Hum Genet 66, 1061–1068 (2021). https://doi.org/10.1038/s10038-021-00932-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00932-y

Search

Quick links